ELFIN observations of the electron isotropy boundary

Colin Wilkins(1), Vassilis Angelopoulos(1), Andrei Runov(1), Anton Artemyev(1), Xiaojia Zhang(1), Jiang Liu(1) and Ethan Tsai(1)

(1) Earth, Planetary, and Space Sciences, University of California, Los Angeles, 90095
e-mail: colinwilkins@ucla.edu; vassilis@ucla.edu; arunov@igpp.ucla.edu; aartemyev@igpp.ucla.edu; xjzhang@ucla.edu; jliu@igpp.ucla.edu; etsai@ucla.edu

ELFIN consists of two identical polar-orbiting 3U+ CubeSats designed to explore the mechanisms responsible for relativistic electron loss during magnetic storms. Pitch-angle resolved energy spectra of electrons between 50-5000keV are routinely measured, which have revealed many electron isotropy boundary crossings in both quiet and active intervals. The electron isotropy boundary (IB) for a particular energy is the nightside magnetic latitude at which levels of precipitating and trapped plasma sheet electron fluxes are first equal, interpreted as having resulted from equatorial field-line curvature scattering into the loss cone. The latitude of first appearance of isotropization (IB) provides a measure of the magnetotail field configuration in the near-earth plasma sheet where the particles were initially scattered, and is therefore an important near-instantaneous remote-sensing tool of the equatorial tail field. Fig. 1 (left) shows a typical IB energy versus L-shell signature during an ascending auroral oval crossing. The negative slope is representative of the usual situation when $B_z(x)$ monotonically decreases with distance from Earth, i.e., $dB_z(r)/dr < 0$. However, in the presence of a localized minimum in B_z at some distance r_m representing the existence of a tailward B_z gradient ($dB_z(r)/dr > 0$ just tailward of $r_m, r>r_m$), a reverse isotropy boundary can emerge (Fig 1, right), whose observations have been historically elusive. ELFIN crossings of several such events are presented and discussed.

Figure 1. Left: ELFIN electron observations of the isotropy boundary (panel 9; ratio of precipitating to trapped fluxes) as it traversed the outer radiation belt into plasma sheet field lines, observing a rapid transition to isotropic fluxes around 2043.5UT ($L\sim7.5$). Right: Similar ELFIN electron observations following a minor storm ($Dst\sim-30$ nT) of an isotropy boundary near $L\sim5.5$, followed by a so-called reverse isotropy boundary at $L\sim6.3$. Such events are historically difficult to observe and may indicate the presence of temporary localized B_z extrema in the magnetotail.