An Investigation of Meshed Printed Monopoles for Optically-Transparent Antennas

Mahmoud Wagih
School of Electronics and Computer Science, University of Southampton, SO17 1BJ, Southampton, U.K.
http://ecs.soton.ac.uk/

Meshed antennas have recently attracted interest for applications where optical-transparency is required [1]. For additively manufactured antennas, the conductive ink used and subsequently the cost of the antenna can be significantly reduced by meshing the antenna’s conductors and ground plane [2]. Despite their wide presence in microstrip patch antennas [3] and more recently for complex-impedance dipoles [2], wide-band coplanar waveguide (CPW) antennas have not been explored with meshed radiators or ground planes. In this paper, a 2.4 GHz monopole is designed and characterized numerically and experimentally for various mesh fill-factors, showing over 2.3 dBi measured gain for up to 93% theoretical transparency.

For a meshed antenna, the theoretical transparency is given by

\[\text{Transparency} = \left(1 - \frac{W_t}{W_g}\right)^2 \]

where \(W_t \) and \(W_g \) are the trace and gap width, respectively [1]. The proposed antenna is a \(\lambda/4 \) CPW monopole directly printed, using dispenser printing [2], on a flexible 75 \(\mu \)m-thick polyimide substrate, shown in Figure 1. The antenna’s simulated bandwidth and radiation efficiency are shown in Figure 1, demonstrating that over 92% antenna efficiency can be maintained by the antenna for up to 93% transparency. When measured experimentally,

the prototypes with \(W_G=5 \) and 8 mm achieved a gain over 2.3 dBi with under 0.2 dB variation between both prototypes. Moreover, both antennas’ \(S_{11} < -10 \) dB bandwidth covers the 2.4 GHz band. It is concluded that meshed printed antennas are suitable for ISM-band applications, enabling optical transparency and lower costs compared to their solid counterparts.

References