Numerical Study of the Absorbed Power Density Reconstruction for Human Exposure Assessment in Quasi-Millimeter and Millimeter Wave Bands

Shuntaro Omi(1), Ryo Matsumoto(1)(2), Kensuke Sasaki(1), Kanako Wake(1), Ryosuke Suga(2), and Osamu Hashimoto(2)
(1) National Institute of Information and Communications Technology, Tokyo, Japan
(2) Department of Electrical and Electronic Engineering, Aoyama Gakuin University, Kanagawa, Japan

Abstract

A method of evaluating the absorbed power density (APD) is studied to reconstruct the APD from fields measured outside the human body (phantom). It is based on the surface equivalence theorem and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) formation. The method is numerically studied and the issue related to the separation distance between the device under test (DUT) and the phantom is discussed. An accuracy improvement technique involving the suitable initialization of the iterative matrix solver is also presented.

1 Introduction

Frequencies above 6 GHz are used in communication systems such as the 5th generation communication system (5G) or WiGig. The latest guidelines by ICNIRP and IEEE [1, 2] introduce the absorbed power density (APD) (termed as the epithelial power density in [2]) on the surface of the human body (phantom) as the measure of the local exposure from the device under test (DUT). In the guideline [1], the APD is defined as a basic restriction (dosimetric reference limit (DRL) in [2]) i.e., the basic measure of exposure. The incident power density (IPD) in free space is also introduced as a reference level (exposure reference level (ERL) in [2]) that has correlation with the APD and is easier to be measured. However, the necessity of using the basic restriction in reactive near-field regions has been pointed out [1].

In contrast to the IPD for which the measurement method is developed in the several works [3–5], the measurement method for the APD evaluation have not been reported to best of our knowledge. In this work, we propose a novel method which reconstruct the APD from the measurement outside the phantom. By means of the reconstruction, the direct measurement at the phantom’s surface is not required which is difficult to be performed. The reconstruction method is based on the one proposed for the noninvasive specific absorption rate (SAR) measurement [6, 7]. The method is based on the surface equivalence theorem and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) formation [8], and reconstruct the equivalent electromagnetic current on the phantom’s surface by solving an integral relation. The method is numerical studied and the accuracy degradation issue is discussed in relation to the separation distance between the DUT and the phantom.

2 Method

The method employed for evaluating the APD is reviewed in this section. The APD is obtained from the electric and magnetic fields on a human body (phantom) as,

\[
\text{APD} = -\frac{1}{2} \Re \left[E \times H^* \right] \cdot \hat{n} = \frac{1}{2} \Re \left[M_{pha} \times J_{pha}^* \right] \cdot \hat{n} \quad (1)
\]

where \(J_{pha} \) and \(M_{pha} \) are the equivalent electric and magnetic currents (see Fig. 1) on the surface of the phantom \(S_{pha} \), respectively. These currents are related to the electromagnetic fields on the surface as

\[
J_{pha} = \hat{n} \times H, \quad M_{pha} = E \times \hat{n}. \quad (2)
\]

The exposure is assessed by the spatially averaged APD (sAPD) as

\[
s\text{APD} = \frac{1}{A} \int_{A} \text{APD} \, da. \quad (3)
\]

The averaging area \(A \) is 4 cm\(^2\) for frequencies from 6 GHz to 30 GHz [1].

As in Fig. 1, the field is measured outside the phantom by a probe. By means of the surface equivalence, the electric field at the probe position is represented by the equivalent...
dielectric substrate
-10 y [mm]
-10 y [mm]
-10
8.38 mm
-5
31
129
8.38 mm
-5
302
10
10
10y [mm]
45
425
S
which the current is defined, e.g., simulations are presented in this section. In the simulation, 3 Numerical Results
the APD given as (1).
relation in (6). Finally, the sAPD in (3) is evaluated using
those on S_dut as [6, 7]
where X is the electric or magnetic current and the dyadic
Green’s functions G_{EM}^{k} are for the electric and magnetic
currents [9] at the wavenumber of k. S is the surface on which the current is defined, e.g., S_{pha} for J_{pha}. Using the
PMCHWT formulation, the currents on S_{pha} are related to
those on S_dut as [6, 7]
\[\left[J_{pha} \right] = \left(\hat{n} \times \left[\begin{array}{c}
\frac{L_{PP}}{\eta_{0}^{2} \eta_{PP}^{2}} + \frac{L_{PP}}{\eta_{PP}^{2}} \\
\frac{L_{PP}}{\eta_{PP}^{2}} + \frac{L_{PP}}{\eta_{0}^{2}} \end{array} \right] \right)^{-1} \left(\hat{n} \times \left[\begin{array}{c}
\frac{X_{PP}}{\eta_{PP}^{2} \eta_{PP}^{2}} + \frac{X_{PP}}{\eta_{PP}^{2}} \\
\frac{X_{PP}}{\eta_{PP}^{2}} + \frac{X_{PP}}{\eta_{0}^{2}} \end{array} \right] \right) \left[J_{dut} \right], \] (6)
where \eta_0 and \eta_\infty are the characteristic impedances of the
free space and phantom’s medium, respectively. Substituting (6) into (4) leads to an integral equation relating the
electric field to the equivalent currents J_{dut} and \text{M}_{dut}. The relation is reduced to a matrix equation by discretization with the Rao–Wilton–Glisson (RWG) basis and testing functions [10] and solved in the least squares sense. In this work, we employ an iterative method called LSQR [11] for
solving the matrix equation with tolerance ATOL = 10^{-3}. Given the equivalent currents J_{dut} and \text{M}_{dut}, the
electromagnetic currents \text{J}_{pha} and \text{M}_{pha} are obtained using the
relation in (6). Finally, the sAPD in (3) is evaluated using the
APD given as (1).
3 Numerical Results
The numerical results obtained by electromagnetic field
simulations are presented in this section. In the simulation,
electromagnetic currents on the surface enclosing the DUT (S_dut) and on the surface of the phantom:
\[\mathbf{E}(r) = \mathcal{L}^k \left(\mathbf{J}_{dut}(r) + \mathcal{K}^k \left[\mathbf{M}_{dut}(r) \right] \right) + \mathcal{L}^k \left(\mathbf{J}_{pha}(r) + \mathcal{K}^k \left[\mathbf{M}_{pha}(r) \right] \right), \] (4)
where \mathbf{J}_{dut} and \text{M}_{dut} are the equivalent electric and magnetic currents on S_dut, respectively. The integral operators \mathcal{L} and \mathcal{K} use dyadic Green’s functions as follows:
\[\left\{ \mathcal{L}^{k} / \mathcal{K}^{k} \right\}(x, r) = \int_{S} G_{\text{EM}}^{k}(x, r, r') \cdot X(r') \, dr'^2, \] (5)
where \mathbf{X} is the electric or magnetic current and the dyadic
Green’s functions G_{EM}^{k} are for the electric and magnetic
currents [9] at the wavenumber of k. S is the surface on which the current is defined, e.g., S_{pha} for J_{pha}. Using the
PMCHWT formulation, the currents on S_{pha} are related to
those on S_dut as [6, 7]
\[\left[J_{pha} \right] \] = \left(\hat{n} \times \left[\begin{array}{c}
\frac{L_{PP}}{\eta_{0}^{2} \eta_{PP}^{2}} + \frac{L_{PP}}{\eta_{PP}^{2}} \\
\frac{L_{PP}}{\eta_{PP}^{2}} + \frac{L_{PP}}{\eta_{0}^{2}} \end{array} \right] \right)^{-1} \left(\hat{n} \times \left[\begin{array}{c}
\frac{X_{PP}}{\eta_{PP}^{2} \eta_{PP}^{2}} + \frac{X_{PP}}{\eta_{PP}^{2}} \\
\frac{X_{PP}}{\eta_{PP}^{2}} + \frac{X_{PP}}{\eta_{0}^{2}} \end{array} \right] \right) \left[J_{dut} \right], \] (6)
where \eta_0 and \eta_\infty are the characteristic impedances of the
free space and phantom’s medium, respectively. Substituting (6) into (4) leads to an integral equation relating the
electric field to the equivalent currents J_{dut} and \text{M}_{dut}. The relation is reduced to a matrix equation by discretization with the Rao–Wilton–Glisson (RWG) basis and testing functions [10] and solved in the least squares sense. In this work, we employ an iterative method called LSQR [11] for
solving the matrix equation with tolerance ATOL = 10^{-3}. Given the equivalent currents J_{dut} and \text{M}_{dut}, the
electromagnetic currents \text{J}_{pha} and \text{M}_{pha} are obtained using the
relation in (6). Finally, the sAPD in (3) is evaluated using the
APD given as (1).
3 Numerical Results
The numerical results obtained by electromagnetic field
simulations are presented in this section. In the simulation,
Figure 5. Error for various separation distances d. The red line shows the results without the improvement technique while the blue one with the improvement.

The reason for the accuracy degradation with decreasing separation distance is that S_{DUT} interrupts the propagation of information about the current on the phantom’s surface, as discussed in [7]. For a smaller separation distance, a larger area is shadowed by S_{DUT}. Also, the information does not propagate through the phantom owing to absorption in the phantom. The loss of information in the shadowed area leads to the non-uniqueness and ill-conditioning of the matrix equation, and degrades the accuracy of the reconstructed results. More precisely, the non-uniqueness means that the solution space with a residual under a specific tolerance is expanded. Also, in such a case, the reconstructed results tend to show a lower APD because the iterative method with the initial solution of zero vector first converges to solutions with smaller norms in the expanded solution space.

A technique of reducing the effect of shadowing has also been proposed in [7]. In this technique, the iterative solver for the matrix equation is initialized with the solution of the lossless phantom ($\sigma = 0$). This technique is also tested in this example and the results in relation with the separation distance is also shown in Fig. 5 by a blue line. The accuracy is significantly improved especially in the smaller separation distances.

4 Conclusion

The reconstruction of the APD based on the surface equivalence theorem and PMCHWT formulation was studied. The method is based on the integral relationship between the electric field and the equivalent currents on the surface enclosing the DUT. The method gives the currents by solving the equation numerically with the iterative solver. In numerical experiments, the method showed accurate reconstruction results, especially when the separation distance between the DUT and the phantom was larger. Accuracy degradation as the DUT approached the phantom closer was also observed, which was due to shadowing on the phantom's surface. An accuracy improvement technique was also applied and found to be effective for small separation distances.

5 Acknowledgements

This work was supported by Ministry of Internal Affairs and Communications Grant Number JPMI10001.

References

