Plasmonic Modulators for THz Wireless Signal Processing

Maurizio Burla*, Claudia Hoessbacher(1), Wolfgang Heni(1), Christian Haffner(1), Yuriy Fedoryshyn(1), Dominik Werner(1), Tatsuhiko Watanabe(1), Yannick Salamin(1,2), Hermann Massler(3), Delwin Elder(4), Larry Dalton(4), Juerg Leuthold(1)

(1) Institute of Electromagnetic Fields, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland; * e-mail: maurizio.burla@ifef.ee.ethz.ch; (2) Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; (3) Fraunhofer IAF, Tullastraße 72, 79108 Freiburg im Breisgau, Germany; (4) Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA

The THz frequency range is rapidly gaining attention in a number of key application domains, including security screening, sensing, medical imaging and, not least, next-generation wireless communications. Particularly evident is the exponential growth of wireless data traffic, with capacity demands reaching tens to hundreds of Gb/s [1]. Those speeds require large transmission bandwidths, but the currently used microwave bands have a limited allocated spectrum, typically limited to a few hundred MHz. Millimeter-wave spectrum in the V- and E-bands offer larger available spectral resources, yet contiguous bandwidths are still below 9 GHz. This renders wireless data rates of hundreds of Gb/s, while keeping hundreds meter link lengths, difficult to realize. The THz band (300 GHz – 10 THz) is thus seen as the “next frontier” for future data links thanks to the extremely large bandwidths available [2]. Accessing the THz spectrum, however, poses several challenges compared to microwaves, namely sensitivity to blockage, largely increased free-space path loss, and atmospheric absorption due to water vapor [1]. In addition, the generation of THz signals with sufficient power as well as their detection are not trivial tasks. Approaches use either electronic [3] or photonic techniques [2, 4, 5], the latter being particularly attractive as they offer seamless integration with the existing fiber networks [6, 7]. For optical-to-THz conversion, uni-travelling carrier photodiodes (UTC-PD) are a well-proven solution [2]. THz-to-optical conversion, in turn, demands very fast electro-optic modulators, with electro-optic bandwidth well above 300 GHz, high power handling and high linearity [8]. Impressive progress has been reported in lithium niobate modulators [9, 10], reaching losses as low as 0.5 dB and an RF half-wave voltage as little as 1.4 V [11]. We recently showed plasmonic Mach-Zehnder modulators displaying the desired characteristics of speed, linearity and power handling simultaneously [12], with a flat frequency response up to 500 GHz, a third-order input intercept point (IIP3) of 18.9 dBm and stable operation at high electrical power level up to 24.4 dBm. We will present their characterization and the implementation of a microwave photonic link at 325 GHz, with >100 GHz bandwidth, only limited by our electrical measurement equipment.

References