20 Gbit/s 306 GHz link enabled by Yagi-Uda antenna

G. Ducournau(1*), Fabio Pavanello(2), Aritrio Bandyopadhyay(1), C. Belem-Goncalves(3), Frederic Gianesello(3), Cyril Luxey(4), Emilien Peytavit(1), J.F. Lampin(1), M. Zegaoui(1,5), M. Zaknoune(1)

1 Univ. Lille, CNRS, Centrale Lille, ISEN, UPHF, UMR 8520 - IEMN, F-59652 Villeneuve d’Ascq, France.
2 Lyon Institute of Nanotechnology - École Centrale de Lyon, France
3 STMicroelectronics, 38920 Crolles, France
4 Polytech’Lab, Polytech Nice-Sophia, University of Cote d’Azur, 06903 Sophia Antipolis, France
5IRCICA-USR3380, 50 Avenue Halley BP 70478 59658 Villeneuve d’Ascq Cedex, France

*email: guillaume.ducournau@univ-lille.fr

We report on the use of a Yagi-Uda antenna on polymer substrate used in a 306 GHz - 20 Gbit/s real-time data link for indoor applications. The Yagi-Uda antenna is described and the validation of the THz link is obtained in amplitude modulation mode and using QAM-16 signals (32 Gbit/s).

The Yagi-Uda antenna used in the THz link is fabricated on a cyclic olefin copolymer (COC). This antenna consists of a coplanar waveguide (CPW) fed Yagi-Uda antenna employing 20 directors. The CPW ground planes act as reflectors. The circuit lies on a 110-μm-thick commercially available COC 6013 membrane. The design achieves a directivity higher than 15 dBi [1].

To enable validation of the THz link using the Yagi-Uda antenna, a dual-frequency laser system is amplitude modulated using a Mach-Zehnder modulator (MZM), followed by an erbium-doped fiber amplifier (EDFA). This optically modulated signal is then injected in an unitravelling carrier photodiode (UTC-PD) feeding a to a 300 GHz CPW probe (Cascade Infinity type [2]). The signal is radiated in free-space by the Yagi-Uda antenna (figure 1), without any external lenses to collimate the signal. The THz link is 0.2 m, and the receiver (associated with a 25 mm lens) is composed of combination of amplifiers and Schottky-barrier diode (Zero-bias Detector, ZBD). Additional amplifiers used after ZBD are required to feed the bit error rate tester, and the BER measurement is done in real-time. The figure 1 is showing the real-time obtained BER performance, highlighting the performance of the Yagi-Uda antenna. The first curve (stars) is the performance obtained with the UTC-PD feeding the receiver directly, and and square one is the performance of the whole data-link.

![Figure 1. Left: Realtime measured bit error rate (BER) of the Yagi-Uda 306 GHz link (20 Gbit/s). Right: view of the experimental setup of the THz link.](image)

References