A Gain Enhanced Metasurface based Monopole Antenna for WLAN Application
Diptiranjan Samantaray, and Somak Bhattacharyya
Department of Electronics Engineering, IIT (BHU), Varanasi, Uttar Pradesh, 221005

Abstract
The design and performance of a highly directive gain enhanced metasurface antenna (MSA) has been reported in this paper. The MSA is formed by incorporating the T-shaped patch with 3×5 order metasurface (MS) in which the MS is associated with annular hexagonal shaped patches arranging in periodic manner. This antenna operates at 4.99 GHz and the -10 dB impedance bandwidth has been achieved in the range 4.79 GHz-5.09 GHz. The antenna provides the maximum realized gain of 11.2 dBi at 4.99 GHz. The endfire radiation pattern has been observed along E-plane while nearly omnidirectional pattern has been realized along H-plane. The designed structure can be promoted for WLAN applications.

1. Introduction
Recently, highly directive gain enhanced planar antennas are more challenging due to their ease of fabrication and low profile [1-8]. Furthermore, these type of special antennas are lighter than conventional reflector antenna and easier to install [6-10]. Various metasurface-embedded designs have been reported in past few years giving rise to highly directive radiation pattern at the far field characteristics [8-12]. The devices such as artificial magnetic conductors (AMC), high impedance surfaces and electromagnetic bandgap (EBG) structures have been reported by utilizing the properties of the metasurface (MS) [5-12]. The key features of MS are low complexity with beam control capability in terms of shaping, pointing and scanning along with implementation amenable to very different technologies [10-17]. Low mass, low envelope, high gain, directive and low power losses are important features of any MS design [5-10]. Owing to these, they have set up applications in various domains such as wireless broadcasting, satellite communication and medical applications [2-8]. MS structures exhibit flexible reflection characteristics and manageable dispersion properties either in the form of surface or guided waves in addition to several applications like absorber, polarization conversion etc. [18-19].

In this manuscript, a high gain and directive MS antenna has been designed. Here, the proposed antenna integrates with a T-shaped monopole and a 3×5 order MS containing annular hexagonal shaped patches arranged in periodic manner. The proposed MS antenna works at 4.99 GHz with fractional bandwidth of 6.21%. This prototype provides a return loss of 28 dB and the maximum realized gain of 11.2 dBi at 4.99 GHz. The proposed antenna exhibits endfire radiation pattern along E-plane while nearly omnidirectional pattern has realized along H-plane in its far-field characteristics.

2. Design of Metasurface Antenna
The proposed antenna assembles with a T-shaped monopole patch as a primary element and the 3×5 order MS. Here the monopole patch and the MS are designed in the same plane in which the primary T-shaped antenna follows the 3×5 order annular hexagonal patches. The 2D schematic views of the proposed structure have been represented in Figure 1 and the detailed parametrically optimized dimensions of the proposed structure are mentioned in Table 1. The antenna is excited by a 50Ω microstrip feedline applied with respect to the ground plane. The proposed antenna has been designed on FR4 dielectric (relative permittivity of 4.4 and loss tangent of 0.025) having thickness of 1.6 mm.

Table 1. The optimized geometrical parameters of the MS antenna

<table>
<thead>
<tr>
<th>Optimized Parameters</th>
<th>Dimension (mm)</th>
<th>Optimized Parameters</th>
<th>Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_s)</td>
<td>100</td>
<td>(r_1)</td>
<td>8</td>
</tr>
<tr>
<td>(l_s)</td>
<td>95</td>
<td>(r_2)</td>
<td>2</td>
</tr>
<tr>
<td>(w_p)</td>
<td>90</td>
<td>(m)</td>
<td>8</td>
</tr>
<tr>
<td>(l_p)</td>
<td>19.5</td>
<td>(n)</td>
<td>18</td>
</tr>
<tr>
<td>(p)</td>
<td>2</td>
<td>(f_p)</td>
<td>19.8</td>
</tr>
</tbody>
</table>

The top and bottom views of the conventional antenna shown in Figure 1(a) and Figure 1(b) are designed on FR4
dielectric with 100×95 mm² cross-section. Initially, a 90×19.5 mm² rectangular patch has been used as a radiating element. This monopole antenna operates at two frequency regions viz., 4.74-4.81 GHz and 4.94-5.12 GHz. In this case, both the bands are narrow and the maximum realized gain of 7.8 dBi has been achieved at 4.77 GHz. Later, these narrow bands have been enhanced into wideband by incorporating a 3×5 order MS along with the T-shaped patch. Here, the MS and the T-shaped monopole patch are designed in the same xy-plane. The annular hexagonal shaped unit cell is formed by optimizing the outer radius as 8 mm and the inner radius as 2 mm. Further, the dimension of the outer side of hexagonal patch has been optimized to 8 mm while the inner one as 2 mm. The 3D view of proposed unit cell is illustrated in Figure 2(a). The four sides of unit cell are set to be periodic boundaries whereas the top and bottom faces are assigned with ports. The unit cell is excited by periodic boundary conditions using commercial software CST Microwave Studio [20]. The basic electromagnetic behaviors of effective permittivity and permeability of the MS layer have been studied and analyzed. The real and imaginary parts of the same are illustrated in Figure 2(b) and Figure 2(c) respectively. The MS layer behaves as a left-handed material (LHM) in the frequency band 4.8-5.8 GHz.

3. Simulated Results

All the optimization and analyses of the proposed MS antenna have been performed using CST Microwave Studio 2017 [20]. The simulated -10 dB impedance bandwidth responses of the antenna with and without MS layer are provided in Figure 3. It is seen from Figure 3 that the conventional antenna operates in the frequency regions ranging from 4.74-4.81 GHz and 4.94-5.12 GHz with return loss of 25 dB at 5.04 GHz. Further, the integration of MS with the conventional antenna exhibits good impedance matching with S_{11} less than −28 dB at 4.99 GHz. The MS layer with T-shaped patch possess a good reflection coefficient at the optimized frequency band with the impedance bandwidth of 6.21%.

The electric field distributions of the proposed structure at different operating frequencies have been shown in Figure 4. It is also observed that at 4.99 GHz the field distribution is maximum around the centre interface of the patch and the surface interface of the unit cells.

The surface current distributions at 4.79 GHz, 4.99 GHz and 5.09 GHz for top surface have been studied and shown in Figure 5. They are denser around the patch position of the conventional antenna and also the surface of unit cells. Also at 4.79 GHz the surface current moves from left to right whereas at 4.99 GHz and 5.09 GHz the surface current moves from right to left. It is evident from Figure 5 that at 4.99 GHz, the surface current is maximum; thereby realizing the best impedance matching.

The three-dimensional gain radiation patterns at different frequencies are studied in Figure 6. The proposed MS antenna provides the realized gains of 6.03 dBi, 11.2 dBi...
and 10.8 dBi at the respective operating frequencies of 4.79 GHz, 4.99 GHz and 5.09 GHz. Here, the 3D gain pattern is highly directed towards 0° in all the bands and it is maximum at 4.99 GHz.

Figure 6. 3D radiation pattern of the proposed prototype at different operating frequencies of 4.79 GHz, 4.99 GHz and 5.09 GHz.

Figure 7. (a) E-plane and (b) H-plane co-polarized and cross-polarized radiation patterns at 4.79 GHz, 4.99 GHz and 5.09 GHz.

Table 2. A Comparative analysis of Proposed prototype with Existing Antennas

<table>
<thead>
<tr>
<th>Antenna Literature</th>
<th>Operating Frequency (GHz)</th>
<th>Fractional Bandwidth (%)</th>
<th>Gain (dBi)</th>
<th>Radiating Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painam et al. [3]</td>
<td>6.22</td>
<td>4.5</td>
<td>4.13</td>
<td>Circular radiating patch</td>
</tr>
<tr>
<td>Saghanezhad et al. [4]</td>
<td>6.2</td>
<td>6.9</td>
<td>4.3</td>
<td>Patch Antenna</td>
</tr>
<tr>
<td>Xu et al. [5]</td>
<td>3.11</td>
<td>1.61</td>
<td>4.15</td>
<td>slot-loaded square patch</td>
</tr>
<tr>
<td>Liu et al. [6]</td>
<td>10.6</td>
<td>7.9</td>
<td>6.2</td>
<td>Rectangular patch antenna</td>
</tr>
<tr>
<td>Proposed Design</td>
<td>4.99</td>
<td>6.21</td>
<td>11.2</td>
<td>T-shaped patch</td>
</tr>
</tbody>
</table>

The complete analysis of co-polarized and cross-polarized radiation characteristics of the MS-based antenna at 4.79 GHz, 4.99 GHz and 5.09 GHz along E-plane and H-plane have been observed in Figure 7. Here, the endfire radiation characteristics have been observed along E-plane as the main lobe is directed towards 0° in all the operating frequencies. Further, nearly omni-directional pattern has been noticed in the H-plane and the cross-polarized radiation level is much below than the co-polarized ones at all the operating frequencies.

A comparative study of previously reported MS type antenna structures have been carried out with the proposed one as provided in Table 2. It can be seen that the presented antenna achieves superior gain enhancement over the operating band in comparison to the reported ones.

4. Conclusion

In this paper, a highly directive gain enhanced MS antenna has been analyzed and studied. The proposed antenna operates over the frequency region 4.79-5.10 GHz with maximum impedance bandwidth of 6.21% at 4.99 GHz. The realized gain of 11.2 dBi has been achieved at 4.99 GHz due to incorporation of the MS. The antenna provides endfire radiation pattern along E-plane and nearly omnidirectional radiation pattern along H-plane. This antenna is applicable for WLAN applications.

5. References

6. Y. H. Liu, and X. P. Zhao, “Perfect absorber metamaterial for designing low-RCS patch antenna”,

