Hierarchies of Ionosphere and Magnetosphere Storms in the Earth’s Environment

Tamara L. Gulyaeva(1), Haris Haralambous (2), and Iwona Stanislawska(3)

(1) IZMIRAN, Troitsk, Moscow, 108840, Russia, e-mail: gulyaeva@izmiran.ru; tam.gulyaeva@gmail.com
(2) Frederick Research Center, Nicosia 1036, Cyprus; e-mail: eng.hh@frederick.ac.cy
(3) Space Research Centre PAS, Bartycka 18a, 00-716 Warsaw, Poland; e-mail: stanis@cbk.waw.pl

Analysis of interdependencies between the different geomagnetic and ionospheric indices is made to estimate their predictive capability. The regression between geomagnetic and ionospheric indices with the High-Speed Stream (HSS) solar wind observed during 477 ring current storms at the 23rd-24th solar cycles is used for ranking the minor, moderate and intense geo-storms for their prediction.

Superseded epoch analysis is applied to the solar wind Vsw, its increment \(\Delta V_{sw} \), the geomagnetic AE, AL, AU, kp, ap, aa, and Dst indices and the ionospheric weather WE, WU, WL indices with zero time \(t_0 \) put at the onset of Dst storm. Global negative WL, positive WU and combined WE indices present ensemble of the local W-index effects of solar storms at each cell of the global GIM-TEC map while the local W index denotes deviation of instant ionospheric parameter (TEC, foF2, hmF2) from the quiet reference [1-4]. Thresholds for the quiet conditions, minor storm G0, moderate storm G1 and intense storm G2 are introduced and provided Table 1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Quiet</th>
<th>Minor storm G0</th>
<th>Moderate G1</th>
<th>Intense G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vsw, km/s</td>
<td>Vsw < 450</td>
<td>450 < Vsw < 500</td>
<td>500 < Vsw < 700</td>
<td>Vsw > 700</td>
</tr>
<tr>
<td>(\Delta V_{sw}), km/s</td>
<td>(\Delta V_{sw} < 65)</td>
<td>65 < (\Delta V_{sw} < 100)</td>
<td>100 < (\Delta V_{sw} < 160)</td>
<td>(\Delta V_{sw} > 160)</td>
</tr>
<tr>
<td>AE, nT</td>
<td>AE < 250</td>
<td>250 < AE < 500</td>
<td>500 < AE < 1000</td>
<td>AE > 1000</td>
</tr>
<tr>
<td>AL, nT</td>
<td>AL > -150</td>
<td>-150 < AL < -400</td>
<td>-400 < AL < -700</td>
<td>AL > -700</td>
</tr>
<tr>
<td>AU, nT</td>
<td>AU < 100</td>
<td>100 < AU < 200</td>
<td>200 < AU < 350</td>
<td>AU > 350</td>
</tr>
<tr>
<td>kp, i.u.</td>
<td>kp < 3</td>
<td>3 < kp < 5</td>
<td>5 < kp < 6</td>
<td>kp > 6</td>
</tr>
<tr>
<td>ap, nT</td>
<td>ap < 15</td>
<td>15 < ap < 48</td>
<td>48 < ap < 80</td>
<td>ap > 80</td>
</tr>
<tr>
<td>aa, nT</td>
<td>aa < 27</td>
<td>27 < aa < 66</td>
<td>66 < aa < 100</td>
<td>aa > 100</td>
</tr>
<tr>
<td>Dst, nT</td>
<td>Dst > -30</td>
<td>-30 < Dst < -50</td>
<td>-50 < Dst < -100</td>
<td>Dst > -100</td>
</tr>
<tr>
<td>WE, i.u.</td>
<td>WE < 4.3</td>
<td>4.3 < WE < 5.0</td>
<td>5.0 < WE < 6.9</td>
<td>WE > 6.9</td>
</tr>
<tr>
<td>WU, i.u.</td>
<td>WU < 2.0</td>
<td>2.0 < WU < 2.4</td>
<td>2.4 < WU < 3.0</td>
<td>WU > 3.0</td>
</tr>
</tbody>
</table>

The geomagnetic and ionospheric activity indices are ranked to provide hierarchy of their response to high-speed streams HSS of the solar wind. Regime of assimilation of the instant data by the reference models and maps allows build up the instantaneous maps of the F2 layer critical frequency and height for more than half-century period which would provide new data base for further analysis, modeling and validation of three categories of geo-storms.

Acknowledgements
GIM-TEC maps are provided by JPL at https://sideshow.jpl.nasa.gov/pub/iono_daily/ . This study is supported by RFBR 19-52-25001_Kipr_a, Russia, and RPF Bilateral/Russia(RFBR)/1118/0004 (RENAM), Cyprus.

References