
URSI GASS 2020, Rome, Italy, 29 August - 5 September 2020

Front-end adaptive electronic modeling with neural networks for radioastronomy

B. Censier*(1) and S. Bosse(1)

(1) Nançay radioastronomy station (USN Nançay), Observatoire de Paris, CNRS/INSU, F-18330 Nançay, France

Abstract

Direct and inverse modeling with neural networks of a com-
plex front end electronics for the S-AAIR project are eval-
uated. While direct model outputs S-parameters based on 4
electronic inputs parameters, inverse modeling has to out-
put 4 optimal electronic parameters with respect to 5 S-
parameters and noise constraints inputs. The advantages to
be expected from neural netwoks include execution speed
without loss of accuracy, and the possibility of modeling
a system without any prior hypothesis based on measure-
ments only, or any other source of information. This is a
crucial step for designing a fully adaptive front-end elec-
tronics, with a single electronic board capable of adapt-
ing to several different observational and instrumental con-
straints like signal over noise, bandpass, dynamic range,
power consumption, and several other possible features. In
this first study, simulated data are used to evaluate the per-
formances of such machine learning methods. The direct
model is shown to reach less than 0.1 dB RMS error with
respect to the simulated data, which is sufficiently accurate
to be compatible with measurements-based modeling with-
out distorsion. The inverse model is constructed by training
a network on a pre-computed optimization function. It is
able to output optimal electronics parameters satisfying a
set of performances constraints without errors compared to
the original function. Those first tests confirm neural net-
works are valid tools for complex RF electronic modeling,
even with modest computing resources running basic net-
works topologies, and thanks to the availability of powerful
associated algorithmy. There is thus several perpectives for
improving and extending those first results.

1 Introduction

Within the framework of the S-AAIR project 1, which
aims at designing an adaptative front-end electronics for
radioastronomy phased arrays, a fast and accurate model-
ing method is required. The circuit has to adapt its per-
formances to each type of observation through controlable
input parameters (e.g. impedances and active sources). It is
particularly important for generalist telescopes, for which
several different types of observations require different per-
formances goals, but may be useful for any set of con-
straints specific to given scientific goals. This implies one is
able to compute the optimal input parameters with respect

1Smart Aperture Array Integrated Receiver

to the desired performances, fastly enough to be compatible
with a regular update of the performances. This is the goal
of inverse modeling, while direct modeling allows predict-
ing output performances given a set of input parameters.
The system can be considered as a complex one, with high
non-linearity and dimensionality, and without any closed-
form expression. Both types of modeling thus often im-
ply the use of simulation and optimization methods that are
heavy on computing resources and time consuming, with
an accuracy limited by systematic effects due to approxima-
tions and/or ill-adapted empirical models. This can also be
done using direct measurements of the performances with a
dedicated instrumentation, which has the advantage of be-
ing hypothesis-free, qualifying the system as it really is.
On the other hand the information provided by measure-
ments are statistical by nature and have to be interpreted
or at least filtered in some way for an accurate model to
be constructed. Finally both measurements and simulations
are requiring a trade-off to be made between time and ac-
curacy: one may have accuracy at the cost of time spent,
or may save time at the cost of accuracy. Neural network
seem to be particularly adapted to this problem, being able
to model non-linear systems with high input/output dimen-
sionnality, with a much faster execution speed than simu-
lations or measurements without any loss of accuracy, and
with the possibility of aggregating all sort of differents in-
put data to construct the model, be it simulations, empiri-
cal/analytical models, or measurements. Moreover the neu-
ral network may be seen as a kind of universal fitting ma-
chine, able to filter out complex noises fundamentally based
on least-square fit without prior hypothesis, and is thus par-
ticularly adapted to noisy data. This article deals with both
direct and inverse modeling with neural networks, based on
the simulation of a S-AAIR frontend electronics.

2 Neural networks: motivation and goal

In short, artificial neural networks are a simplified modeling
of how biological neurons work. An artifical neuron simply
takes N inputs, sum them while punderating them with a set
of weights, and pass the result in a given thresholding func-
tion (the "activation function", which is introducing non lin-
earities in the modeling). An artificial neural network is a
set of interconnected neurons. In the present study, the feed-
forward topology is used with one input layer, one output
layer, and one or more hidden layers of neurons in between.
The neural network is set to follow a measured and/or an-



Figure 1. Sketch of a neural network used for direct modeling, with one input layer (4 neurons for 4 input parameters), some
hidden layers (20 neurons on a single layer on the sketch for the sake of clarity) and one output layer (48 neurons for the 4
S-parameters in 12 frequency channels). Each layer is "fully connected", meaning that each neurons of one layer is linked to
every neurons of an adjacent layer. The actual network used for direct modeling has 5 hidden layers with 60 neurons each.

alytical and/or simulated and/or effective model based on
a training step. During this training step, several examples
drawn from measured or simulated data are presented to the
network. For each pair of input/output in the training set,
the network compares its output with the desired output,
and modify the weights in order to minimize a given loss
function related to the error between computed and desired
output.This training step thus involves optimization meth-
ods, with weights being adjusted iteratively during training
by e.g. a gradient-based algorithm. As already stated, there
is a trade-off to be made between detailed physical model-
ing that may be accurate but slow and heavy on resources,
or an approximate modeling which will be faster but with a
loss of accuracy. Neural networks offer a way of approxi-
mating an unknown function with both high accuracy, fast
response, and no priors on the model. Indeed following the
universal approximation theorem (see [1]), about any func-
tion may be theoretically approximated with the desired ac-
curacy by a single hidden layer neural network. This is
a rigourously demonstrated nevertheless purely theoretical
result. In practice one has to take care about the learnability
of a given problem: does the optimization algorithm exist
and will it converge in a reasonable time ? As a rule of
thumb, a network with few neurons may lack accuracy re-
producing the training data, while increasing the number
of neurons allows to increase this accuracy. However in-
creasing the number of neurons is equivalent to increasing
the number of internal parameters to be optimized during
learning, hence the increase of accuracy, but at the risk of
slow and/or difficult convergence requiring dedicated algo-
rithm. We fix two reference orders of magnitude for the
accuracy goal. We expect a 10% relative error on simula-
tion, and a 1% relative error on measurement. This trans-

lates to between 0.5 dB and 0.1 dB difference between in-
put data and neural outputs. The training based modeling
involves no prior and allows to agreggate information from
various data sources, in time domain, frequency domain, or
any parametric form. The basic goal is to build a fast direct
model, allowing to sum up all the informations about the
system behaviour in a functionnal block. This function may
in turn then be used as a fast block model in RF simulations,
massively speeding up the process. If trained on measured
data, this offers the possibility to do a kind of snapshot of
the electronic behaviour based on measurements. For in-
verse modeling, this direct model may in turn be used in a
classical optimization loop, in this work however a network
is directly trained with specifications as inputs and optimal
electronics parameters as output. Two different python li-
braries have been evaluated: pybrain which is a basic and
easy to use machine learning library, and tensorflow which
is a more sophisticated library with far more fine tuning
possibilities, a wide user base and the access to several al-
gorithms optimized for multilayer networks.

3 Data

The system under study is a one stage amplifier described
by 4 input parameters (x1, x2, x3, x4 in the follow-
ing). Those 4 input parameters are impedances and ac-
tive sources settings, they are each set by a value coded
on 4 bits, allowing 16 different values (0-15). The out-
put specifications corresponding to each set of the 4 inputs
have been simulated on the electronic simulation software
ADS. Those outputs includes the 4 scattering parameters
S11, S12, S21 and S22 vs. frequency in 12 frequency chan-
nels between 400 and 1500 MHz. We first restrict the data



−0.10 −0.05 0.00 0.05 0.100

5

10

15

20

No
rm

al
ize

d 
hi

st
og

ra
m

S11 |σ= 0.032 dB

−0.10 −0.05 0.00 0.05 0.100
10
20
30
40
50
60
70

S12 |σ= 0.007 dB

−0.10 −0.05 0.00 0.05 0.10
Error (dB)

0
20
40
60
80

100

No
rm

al
ize

d 
hi

st
og

ra
m

S21 |σ= 0.005 dB

−0.10 −0.05 0.00 0.05 0.10
Error (dB)

0
20
40
60
80

100
120
140

S22 |σ= 0.004 dB

Figure 2. Histogram of errors in dB, with error = (simu-
lation data(dB) - neural model(dB)) computed on each out-
put sample, for each of the 4 S-parameters and over the
full input parameters and frequency range. The dashed line
in each histogram is a gaussian distribution with the same
standard deviation as the measured error distribution for
reference. This standard deviation σ is showed on top of
each panel.

to useful operating points, with S21 > 0 dB, S11 < -10 dB,
and S22 < -10 dB. Based on that filtering, we keep 14040
samples from the original 65536 simulated samples.

4 Direct modeling

The neural network for direct modeling has four input neu-
rons corresponding to the 4 electronic parameters x1, x2,
x3, x4. Each of the 48 output neurons will represent a
given frequency channel for one of the 4 s-parameters (see
figure 1). Following a classical training scheme, 90% of
the simulated data are used for training and the remaining
10% is used for validation, in particular monitoring of pos-
sible overfitting. A typical training session is completed
in several minutes to hours on a regular laptop, depend-
ing on the desired accuracy, the volume of the training set,
and the number of neurons. Once trained, the accuracy is
evaluated by computing an error which is the difference be-
tween the actual simulated data, and the neuron network
outputs in dB. A first try with only one 60 neurons hidden
layer with the pybrain library already allows to reach a root
mean square (RMS) error of 0.5 dB on S11, while the other
3 S-parameters errors are around 0.1 dB RMS. The error
distribution nevertheless shows a non negligible probabil-
ity of isolated samples showing dB scale errors. We thus
increased the number of hidden layers, which increases the
number of free parameters with additional neurons. The
definitive results presented in figure 2 are obtained on a 5
hidden layers/60 neurons each network using the tensorflow
library. The RMS errors are of the order of hundredth of dB
or less, with a distribution close to or even well under a cor-
responding gaussian with the same standard deviation (see
figure 2 dashed lines). The neural network model is thus
able to model data with greater accuracy than the ≈ 0.1 dB
noise expected with measurements. The ≈0.5 dB accuracy
obtained with a single layer network is reached in about

10 minutes on a classical laptop. The more accurate multi-
layer version requires about 2 hours to get close to the 0.01
dB RMS error level. This illustrates the cost of using big-
ger networks in terms of training time, while the execution
time once trained remains very low. If regular and frequent
update of the model are needed, there is a thus a possible
trade-off to be made between the accuracy needed and the
time spent on regular training session for adaptive model
update.

5 Inverse modeling

Compared to direct modeling, inverse modeling’s main dif-
ficulty is the non uniqueness of solutions: there can be
several set of input parameters satisfying the desired con-
straints. Moreover, what we need is not an inverse function
that gives input parameters that will lead to the exact per-
formances we asked for. We rather need the system to find
an optimal solution to a set of performance constraints, typ-
ically defined with low and high bounds. There are several
ways of overcoming those problems. In later development
stages, we expect to use the ability of advanced neural net-
works topologies to compute this optimization feature dur-
ing training. For this first step we trained the network on a
pre computed optimization function. The classical method
used for optimization is the creation of a loss function that is
minimum when the constraints are best met. Since we have
access to a whole simulated datacube, we can compute this
loss function for any set of input parameters and any set of
constraints. This loss function is defined as follows:

10 × δS22max + 1000 × δS11max + 10 × δS21 + 100 ×
δNFmax

Where:

• δS22 is the squared sum of differences between
S22(x1,x2,x3,x4) and the constraint S22max over all
frequency channels.

• δS11 is the squared sum of differences between
S11(x1,x2,x3,x4) and the constraint S11max over all
frequency channels.

• δS21 is the squared sum of differences between
S21(x1,x2,x3,x4) and the desired gain S210. Only
differences greater than the input specifications ∆

S21max are considered.

• δNFmax is the squared sum of differences between
NF(x1,x2,x3,x4) and the constraint on noise figure
NFmax.

The sum of all these terms adds up the different constraints
together, and each of those constraints are punderated in or-
der to prioritize those constraints (here for example the con-
straint on S11, with a punderation of 1000, is given more
importance than the constraint on S22 with a punderation



Figure 3. Sketch of the neural network used for inverse modeling, with one input layer (5 neurons for 5 constraints on maximum
return loss (S11max and S22max), desired gain value and maximum variation in the frequency domain (S210 and ∆ S21max),
and maximum noise (NFmax)), four hidden layers (30 neurons each) and one output layer (4 neurons to output electronic
parameters x1, x2, x3 and x4)

of 10). The method for generating training data is the fol-
lowing:

• set a grid over the 5-D space covering input specifica-
tions S11max, S22max, ∆ S21max, S210 and NFmax

• for each point of that grid, compute the loss function
over the whole (x1,x2,x3,x4) range

• find the minimum value, and the corresponding
x1opt ,x2opt ,x3opt ,x4opt parameters that are optimal
with respect to the given constraints.

A training set composed of S11max, S22max, ∆

S21max, S210 and NFmax values as inputs, and
x1opt ,x2opt ,x3opt ,x4opt values as outputs is then built. The
network has 5 input neurons corresponding to 5 constraints
on S-parameters and noise, 4 outputs corresponding to op-
timal electronic parameters x1opt ,x2opt ,x3opt ,x4opt (see fig-
ure 3). Each of these 4 outputs is a real number, while
the simulated electronic parameters are integers coded on
4 bits. The outputs are simply rounded to the closest value,
thus an output error of less than 0.5 will give the correct
output after rounding. Sufficient performances have been
reached with 4 layers of 30 neurons using the pybrain li-
brary (see figure 3). Once trained, the neural network re-
produces exactly the optimization function behaviour over
validation data.

6 Conclusion

Neural networks have been showed to be an interesting
tool for both direct and inverse modeling. A system with
controllable features is modelled with sufficient precision
to be compatible with both measurements and simulation-
based modeling. Later applications could include the use

of measurement-based functional blocks for both reducing
simulation time and using an effective and realistic model.
Concerning inverse modeling, the ability of neural net-
works to be used as inverse solvers on typical engineering
constrained problems has also been illustrated. The net-
work obtained represents a huge time advantage compared
to similar optimization in simulation software like ADS. A
network indeed has a typical milliseconds execution time
once trained, while a single point could take hours to be
computed with a classical optimization scheme using simu-
lations. Nevertheless, the network still relies on those sim-
ulations to be computed over the whole input parameters
range. Further works will study the possibility for com-
puting this optimization step directly during training using
more sophisticated neural network topologies and/or train-
ing scheme (see e.g. [2]) It may also be noted that the
hardware and software involved in this study is of average
performance and easily available (average laptop without
graphical processor parallelization) For an adaptive elec-
tronics, real-time implementations seems possible on exist-
ing dedicated hardware like GPU or FPGA based solutions,
or the more recent developments around neural processing
hardware [3].

References

[1] Kurt Hornik, Maxwell Stinchcombe, Halbert White,
Neural Networks, Volume 2, Issue 5, 1989, pp. 359-
366

[2] Zhang Chao, Jin Jing, Na Weicong, Zhang Qi-Jun, Yu
Ming, IEEE Transactions on Microwave Theory and
Techniques. PP. 1-17 (2018)

[3] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen,
Tianqi Tang, Engineering, 2020 (In press) ISSN 2095-
8099


