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Abstract

Fringe wave current components of modified edge representation (MER) equivalent edge currents (EECs)
are modified by Fresnel zone number. The dipole wave scattering from flat square plates are detailed with
numerical examples and the accuracy of the fields predicted by this new fringe wave expressions is confirmed
by comparing with MoM.

1 Introduction

The method of equivalent edge currents (MEC) is one of a high frequency approximation for diffractions.
However equivalent edge currents (EECs) are clearly defined only at the diffraction points and ambiguities
exist at the remaining part of the periphery. As a result the line integration of EECs along the complete
periphery cannot be conducted in a straight forward manner. Derivation of EECs at general edge points has
remained a problem for GTD-MEC [1]. Modified edge representation (MER) has been proposed to solve the
problem in [2, 3]. The EECs are determined for the fictitious edge segment at every point on the periphery
in terms of classical Keller‘s diffraction coefficients for general incidence [4].

As in well known, total EECs (GTD-EECs) consist of the physical optics components (PO-EECs) and
the fringe wave components (FW-EECs). MER with classical PO diffraction coefficient recover PO surface
integration perfectively is demonstrated in [2]. On the other hand, FW-EECs account for the radiation from
fringe waves peculiar to the edge. GTD-EECs as directly applied to MER actually lead to erroneous field
when the observer is in the vicinity of the incident shadow and reflection shadow boundaries (ISB/RSB) for
closely located source. Authors in [3] presented a simple approximation for for inclusion of FW-EECs in
MER, where FW-EECs are weighted by a function of the angle between the modified edge and the real edge.
This weighting function gives much better results than GTD-EECs but still there are some error at and near
the boundaries (SBs). This error suggests the needs for new FW-EECs specially refined for MER. In this
paper a function based on Fresnel zone number (FZN) distance [5] between the reflection point and the point
of integration is introduced for the weighting of the FW-EECs. This function suppresses the contribution of
FW-EECs for the observer in the vicinity of ISB/RSB and enhances the accuracy of MER even in grazing
incidence, as is demonstrated by numerically comparing with MoM and PO.

2 Modified Edge Representation (MER) for the Definition of EEC

Considering an edge-fixed coordinate system, the position of the source and observer are defined by
(ri, βi, φi) and (ro, βo, φo) respectively. The unit vector ê is along the edge and considered according to the
counter clockwise direction and a fictitious edge τ̂ (see Fig. 1(a)) at every point of integration is defined to
satisfy the diffraction law for the given directions of incidence and observation [2, 3].
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ê

Modified edgeΦ

A
ct

ua
l e

dg
e

Q

Arbitra
ry

point on

the edge

(a)

at (r,   ,   )
θ  φ 

a

a

d
ro

ri
rp

O
bserver

O

Edg
e−

3

Edge−4
X

Y
Q

Edg
e−

1

Z

Edge−2

Dip
ol

e

φ

θ

(b)

Figure 1: (a) Definition of the modified edge (b) A square plate illuminated by a dipole.

For soft and hard boundary conditions EECs along the edge of the scatterer ê are given by [6, eq. (13-103)],
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where Ds, Dxs, Dh and Dxh are the diffraction coefficients at the integration point Q calculated with
respect to a modified edge τ̂ for a given source and observation as in Table. 1. Ei

βi
(Q) and Ei

φi
(Q) are

parallel and perpendicular incident field components with respect to τ̂ at the point (Q). The far-zone
electric field radiated by EECs is obtained by complete line integration along the real edge of scatterer ê
as [3], [6, eq. (13-104)];
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Table 1: Diffraction coefficients of PO, FW and GTD
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2.1 Diffraction from a Square Plate

A dipole along the x-axis is considered very near to a square PEC plate as shown in Fig. 1(b). The
diffracted field and total field patterns in φ = 33.75◦ and φ = 45◦ plane are compared with Wipl-D simulated
results shown in Figs. 2(a) and 2(b) respectively. For the observations at and near the RSB and ISB, GTD-
MER deviates faraway from Wipl-D simulated results while PO matches with it almost perfectly. At the
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Figure 2: Total and diffracted field patterns (a) at φ = 33.75◦ plane (b) at φ = 45◦ plane.

same time, however, it is observed that at the angles far from SBs, the GTD-MER matches with the Wipl-D
simulated results very well when compared with the PO. The above observation implies that the FW defined
by the difference between GTD- and PO-MER should be modified especially for the observer near SBs for
the grazing incidence. Actually, the FW in Table 1 have been used widely simply because of its finiteness
in contrast with the infinities of GTD and asymptotic PO of Keller type. Here our claim is that finiteness
is not enough for FW components and they should be revised to enhance the accuracy of GTD-MER.

3 Correction Factor for Fringe Wave using the Fresnel Zone Number (FZN)

A weighting function based on FZN of [5] is introduced to correct the FW at and near the SBs as follows.

Each integration point along the periphery of the scatterer is counted in terms of Fresnel zone number
n which is defined as n = 2L/λ, where L is the path difference between two path; direct path from source
(S) to observer (O) and diverted path from source (S) to observer (O) via the point on the scatterer (P),
and λ is the wavelength. The distance between point of reflection and integration is defined by Fresnel zone
number as |nP − nR| = ∆nR ≤ ∆nR

B (see Fig. 3(a)). Where, nP and nR are the Fresnel zone numbers at
the point of integration on edge of the scatterer and the reflection point (R), respectively. The parameter
∆nR

B is the number which determines limiting value of ∆nR.
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A weighting function based on this FZN (see Fig. 3(b)) is proposed to improve FW components given by
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when integration point merges with the point of reflection ∆nR = 0, EY E
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Now, new EY E augmented new GTD MER (PO MER +EY E× FW MER) gives better agreement in all
angle of observation including at and near BSs even for grazing incidence as shown in the Fig. 2.

4 Conclusion

In this work, the contribution of FW-EECs to total EECs are weighted by a function based on Fresnel
zone number. Uniform fields are predicted everywhere including ISB and RSB using only classical diffraction
coefficients and the numerical results for diffraction from flat plates demonstrate the potential of these EECs.
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