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Abstract 

 
  This work is dedicated to the study the of an electromagnetic field behavior in a wedge-shaped region with wedge 
opening angle 2Ф  close to the straight angle, 2Ф  . This geometry is a useful model for applications in radio-
navigation aids, in cellar communication. In this work we present the asymptotic expansions of the Helmholtz equation 
solution with the right part corresponding to the electric dipole. Dissipation field of spherical wave at a wedge with 
perfectly conducting face, with the wedge opening angle close to the strait angle is described by the sum of the fields of 
four half-shadow waves and an edge wave field. Half-shadow waves are calculated by Mаcdonalds integrals. 
Computations are confirmed by measurements on the wedge model. 

 
1. Introduction 

 
 The investigation of electromagnetic wave diffraction on wedge-shaped structures has very important applied 
meaning for electromagnetic field calculation, for example, in the radio-navigation aids [1], in cellular communications 
and in other cases [2]. Originally the rigorous solution of the diffraction problem for an infinitely thin perfectly 
conducting half-plane was found by Sommerfeld [3]. At present number of rigorous results in diffraction on thin screens 
is large. The basis for getting the majority of them presents the defined diffraction field in the form of Sommerfeld 
contour integral. Numerous attempts to receive short-wave asymptotic expansions of the considered problem solution 
were made by different authors. In this work the case is considered an important for practical applications when the 
wedge opening angle value is close to the straight angle, 2Ф  . This case has the following peculiarity: two poles 
turn out to be at a short distance in the vicinity of the saddle point on the standard integrating contour. 
 

2. Problem statement 
 
 In the present work the derivation of asymptotic expansions is given with k   of Helmholtz equation solution 
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 , , z   – cylindrical coordinates, where     . 

 , ,П z 

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and some additional conditions on the wedge edge.  
 During construction of short-wave asymptotic expansions of the considered problem we proceed from the well-

known integral representations of these solutions [4]. Namely, if to designate      exp /G ikR R      , 

where    22 2
0 0 02 cosR z z         , then the solution can be represented in the form: 
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where   – Sommerfeld contour of integration, is shown in Fig. 1 and consists of two loops 1  and 2 on the complex 

plane  ; (the contour   is symmetrical relative to the coordinate origin). In Fig. 1 the kernel  G   branching points 

2 n ic    are shown as well with vertical cuts approaching infinity. 
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 Fig. 1. Sommerfeld contour Fig. 2. Measurements scheme 
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3. Problem solution 
 

 Numerous attempts to receive asymptotic expansions of the considered problem solution were numerously 
performed by different authors. These attempts were based on saddle points method. To make things clear suppose that 

/ 3 Ф   . This case covers an important for practical applications situation when the wedge opening angle 2Ф  is 

close to   in its value. For simplicity, we assume that the electric dipole is parallel to the wedge edge. Then in the plane 

perpendicular to the wedge edge Hertz vector has the only component  ,kП   , parallel to the wedge edge. Now we 

complement the contour   up to the closed one by the contours 1c  and 2c  (Fig. 1). The integral around the closed 

contour is estimated by the residue theorem and gives the field geometric optics part. The integrals of 1c  and 2c  
contours give the field diffraction part. The field diffraction part is presented in the form of the asymptotic sequence 
expansion  m m N

f   when  0 0/ R    
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 Summing up the geometric optics fields and the field diffraction part we get:  
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   – Macdonald integral of m order. 

 
 Here we name the fields described by ( )M   functions as half-shadow fields.  0 0, , ,C      – the item 

describing some component of the edge wave. It is not presented here due to the bulky expression. 
 

4. Experimental results 
 

 The wedge model was made with the help of flat aluminium alloy sheets. The edge Ф    dimensions are 6,0 m 

х 2,4 m , the edge Ф    dimensions are 1,2 m х 2,4 m. The sheets are connected to each other by a soft metallic strip. 

The layout of the receiving and transmitting antenna arrangement is given in Fig. 2.  
 The distance between the receiving and transmitting antennas equals approximately 7,2 m. Calculations have 
shown that the edge wave contribution  0, , , оP C      into the common field П  on the given distance, in the angle 

sector near the edge Ф    was negligibly small. The experimental and calculation data are normalized relatively to the 

field intensity in the maximum of the first interference lobe of the transmitting antenna directivity pattern over the plane 
( 2Ф  ). In Fig. 3 along the abscissa axis the angle   is depicted between the straight line from the point being the 
projection of the transmitting antenna onto the edge Ф    to the observation point and the plane Ф   . Besides 

data in the geometric optics approximation are presented by broken graphs. The comparison of both calculated by 
asymptotic formulas results and the experimental ones shows their good compliance. 
  

  
 

Fig. 3. Amplitude dissipation patterns of the electric dipole field parallel to the wedge edge,  
when φ0=85° 33’ 9.7” and φ0=83° 36’ 35.5” cm (λ=3,05 cm, 2Ф=175°, rw=600 cm, R=720 cm) 

 
5. Results 

 
 In region D we have four boundaries: 1 0 2 0 3 0 4 0, 2 , 2 , 4 ,Ф Ф Ф                         

Two of them are situated in the region Ф Ф   . Two other are situated outside the wedge-shaped space. The roles of 

the boundaries n  change with the source angular position adjustment to 0  or the wedge opening angle to 2Ф  (with 

situation change). One of the boundaries goes outside the wedge limits Ф Ф   , while another one placed 

symmetrically relative to the edge Ф   ) appears in the region Ф Ф   . The field beam structure in the wedge-

shaped region in the geometric optics approximation for each of four possible situations is presented on Fig. 4. 
 The field in the geometrical optics approximation suffers a break at the indicated boundaries (“light-shadow” 
boundary). The function  nM    with the corresponding argument takes meaning equal to the half amplitude of the 

wave suffering the break. So the diffraction field has the transitional character at “light - shadow” boundaries of the 
propagation regions of the falling and reflected spherical waves. In the vicinity of the indicated boundaries energy 
redistribution takes place. 
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Fig. 4. Geometric optics waves ways 

 
6. Conclusion 

 
 Asymptotic expansions (with k  ) of Helmholtz equation solutions with the right part corresponding to the 
electric dipole were received. The dissipation field of the spherical wave at the wedge with perfectly conducting faces, 
with the wedge opening angle close to the straight angle is described by the sum of the fields of four half-shadow waves 
calculated with the help of Macdonald integral and the component describing the edge wave field. In the considered case 
of the given work it is possible to neglect the last component. The comparison of the calculated by asymptotic formulas 
results and the experimental ones shows their good compliance. 
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