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Abstract 

 
Microwave imaging systems are acquiring an ever growing importance. In order to tackle the nonlinearity and ill-

posedness of the underlying inverse scattering problems, several inversion approaches have been formulated in the 

scientific community. In this framework, an efficient Gauss-Newton method, based on a regularization in Banach spaces, 

has been recently developed and numerically tested. In this paper, an experimental validation of the approach using real 

data is provided. 

 
1. Introduction 

 
In recent years, there has been a growing interest in the development of microwave imaging systems [1]–[6]. In 

fact, such systems are in principle able to directly provide the distributions of some of the physical properties of the 

unknown targets under test (e.g., the dielectric permittivity and the electric conductivity) starting from measurements of 

the electric field scattered by a given target when illuminated by incident waves at microwave frequencies. An example of 

these systems is represented by the prototype described in [7], which is intended for applications in the wood industry. 

As it is well known, the electromagnetic inverse scattering problem (which represents the basic mathematical formulation 

of microwave imaging systems) turns out to be non-linear and strongly ill-posed. Consequently, developing efficient 

methods able to obtain meaningful reconstructions is not an easy task. In particular, it is necessary to devise specifically 

designed inversion schemes, incorporating nonlinear regularization techniques.  

 

Several methods have been proposed in the past, employing both deterministic and stochastic strategies [8]–[13]. 

Among the others, the present Authors recently developed an efficient inexact-Newton inversion method in [14], [15]. In 

most cases, regularization methods are exploited in the context of Hilbert spaces. Although being very powerful, such 

approaches usually give rise to smooth (and sometimes over-smooth) reconstructions, often characterized by artifacts and 

ripples. An imaging approach based on a Gauss-Newton strategy combined with a regularization working in Banach spaces 

(i.e., complete vector spaces endowed with a norm that only allows “length” and “distances” between its elements to be 

measured) has been introduced in [16]. Due to the geometrical properties of Banach spaces, this method allows to obtain 

solutions with lower over-smoothness and less artifacts than standard Hilbert-space ones. This new approach has been 

numerically tested in [17], [18]. In this paper, a validation of the proposed method by using real scattering data 

experimentally measured is reported and discussed.  

 

The present contribution is organized as follows. The mathematical formulation of the approach is briefly recalled 

in Section 2. Some examples of the results provided by the developed inversion procedure are described in Section 3. 

Finally, conclusions are drawn in Section 4. 

 
2. Mathematical Formulation 

 
Let us consider a tomographic imaging configuration. The target is modeled as an infinite cylinder with axis parallel 

to � direction, whose cross-section is located within an investigation domain ���� . A transmitting antenna generating a TM-

polarized electromagnetic field at microwave frequencies is used to illuminate the investigated region. Moreover, the 

scattered electric field is measured in an observation domain ����	. A 
��
 time dependence is assumed and omitted in the 

following. As it is well known, for this configuration the scattering problem turns out to be scalar and two-dimensional [1]. 

The �-component of the scattered electric field �	��

  originated by the presence of the object is given by 
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where �
�
 is the �-component of the total electric field, � = &'()*) is the vacuum wavenumber (being () the dielectric 

permittivity and *) the magnetic permeability of the vacuum), ���, ��� = +,)�����|� − ��|�/4 is the 2D Green function for 

the present scattering configuration (being ,)���
 the Hankel function of zeroth order and second kind), and � is the contrast 

function, defined as 

 

���� = (0��� − 1 − + 2���&() , � ∈ ����  . (2) 

 

where (0 and 2 are the relative dielectric permittivity and the electric conductivity of the investigation domain ���� . Since 

the total electric field inside the investigation domain is unknown, a second equation is necessary in order to find a solution 

of the electromagnetic problem, i.e., 

 

�
�
��� = ������� + �	
�
����
�
���� = ������� − �� � ������
�
�������, ������
 !"#

, � ∈ ���� . (3) 

 

Equation (1) and equation (3) can be joined together so as to obtain the following non-linear scattering equation  

 �	��

��� = ℱ������, � ∈ ����	  , (4) 

 

where ℱ: 6 → 8 is a non-linear operator that maps the contrast function � ∈ 6 into the scattered field ℱ��� ∈ 8. Equation 

(4) is solved by means of an iterative approach which searches for a minimum of the functional Φ: 6 → ℝ 

 Φ��� = 12 ‖ℱ������ − �	��

���‖=� , � ∈ ����	  (5) 

 

by accomplishing a regularization in the >? spaces of @-summable functions, with 1 < @ < +∞ (6 = 8 = >?). The 

algorithm is essentially composed by two nested cycles: an outer cycle for performing a Gauss-Newton linearization of the 

operator ℱ around to the current reconstructed contrast function, and an inner cycle, which solves the linearized equation 

applying a truncated Landweber regularization scheme in Banach spaces. Furthermore, our algorithm is able to exploit the 

information gathered from scattered field data acquired at C different frequencies D� (�	��

��� , E = 1, . . , C) by using a 

frequency-hopping approach. In details, the algorithm works as follows (E is the frequency index, G is the outer index, and H 
the inner one): 

 

A. Initialize the inversion algorithm at the Eth frequency. The outer iteration index is set to G = 0 and the starting 

guess �)��� ∈ 6 is initialized with 

 �)��� = J 0, E = 1�̂��LM�, 1 < E ≤ C (6) 

 

1. Linearize the operator ℱ around �����
, in order to obtain the linear equation 

 ℱO"�!�ℎ���� = ����� . (7) 

 

The operator ℱO"�!�: 6 → 8 is the Frèchet derivative of ℱ at ����� ∈ 6 and ����� = �	��

��� − ℱQ�����R ∈ 8. 

2. Solve equation (7) by using the Landweber regularization algorithm in Banach spaces (inner loop) 

 ℎ�,)��� = ℎS�,)��� = 0 

TℎS�,UVM��� = ℎS�,U��� − WℱO"�!�∗ Y= ZℱO"�!�ℎ�,U��� − �����[
ℎ�,UVM��� = Y\∗QℎS�,UVM��� R , H = 0, 1, 2, …  

(8) 

 

being ℱO"�!�∗ : 8∗ → 6∗ the adjoint operator of ℱO"�!� and W > 0 the step length. The operators Y=  and Y\∗  are the duality maps of the Banach spaces 8 and 6∗ [16]. In >? spaces, they are defined as Y_`�∙� =‖∙‖_`�L?|∙|?LMsign�∙�, where sign�f� = 
� ghi�	� if f ≠ 0 and 0 otherwise. These inner steps are iterated 

until an a-priori convergence criterion is satisfied (at iteration H = H�?
). Then, the regularized solution 

is denoted as ℎk���� = ℎ�,Ul`m���
. 

3. Update the current solution with ��VM��� = ����� + ℎk����
. 



4. The outer steps 1-3 are iterated until some a-priori convergence criterion is fulfilled (at iteration G =G�?
). Then, the outer cycle is terminated and �̂��� = ��l`m���
 is the solution at frequency index E. 

 

B. Update the frequency index and iterate from A, until all the frequencies D�, E = 1, . . , C, are processed. 

 

3. Experimental Results 
 

In this work, an experimental validation of the developed algorithm is presented. In particular, the results obtained 

with the FoamDielIntTM experimental dataset provided by the Institut Fresnel of Marseille (France) [19] are reported in 

the following. The target is a combination of two cylinders: the first one is a foam cylinder of diameter �M = 80 mm with 

center at the origin and characterized by a relative dielectric permittivity (0,M = 1.45, whereas the second one is a plastic 

cylinder of diameter �� = 31 mm, centered at �−5; 0� mm, and with (0,� = 3. The target is illuminated from s = 8  

different directions and the scattered electric field is measured at t = 241 locations (additional information about the 

measurement setup can be found in [19]). Measurements have been taken at C = 9 different frequencies (from 2 to 10 GHz 

with a frequency step of 1 GHz). In the inversion algorithm, ����  has been divided into 40 × 40 square subdomains. 

Furthermore, the maximum numbers of outer and inner iterations have been set equal to G��w = 20 and H��w = 10, 

respectively. Moreover, the two nested loops have been stopped when the variation of the residual Φ between two 

subsequent iterations is below 1%.  

 

The inversion algorithm has been run for different values of the parameter @, which characterizes the working 

Banach space. For @ = 2, the approach provides the standard Hilbert space reconstruction. Moreover, the performance of 

the frequency hopping strategy has also been evaluated by varying the number of considered frequencies, C; in particular, 

for a fixed value of C, the set of considered frequencies is D� = 2 + �E − 1� GHz, E = 1, … , C. The relative reconstruction 

errors 
0�U (referred to the whole investigation domain) versus the norm parameter @ and for different sets of frequencies 

are reported in Figure 1. As can be seen, for this case, when considering only a small frequency set, the best results are 

achieved with low values of @. When using a wider set of frequencies, containing also the higher ones, reconstruction errors 

are almost constant with respect to @. However, in this case, larger values of @ seem to provide slight enhancements in the 

global reconstruction error. Some of the reconstructed dielectric profiles are shown in Figure 2. 

 

 
Figure 1. Relative reconstruction errors for the whole investigation domain versus the parameter @ and for different numbers of considered frequencies. 

 

 
 

 (a) (b) 

Figure 2. Reconstructed distribution of the dielectric permittivity for the target FoamDielIntTM: (a) overall best reconstruction (@ = 1.4, C = 4); (b) best 

reconstruction using all the available data (@ = 2.3, C = 9). 

 

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

e
re

l

p

F = 1
F = 2
F = 3
F = 4
F = 5
F = 6
F = 7
F = 8
F = 9

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

y
 [

m
]

x [m]

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ε
r

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

y
 [

m
]

x [m]

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ε
r



In particular, Figure 2(a) shows the overall best reconstruction, achieved with @ = 1.4 and considering four 

frequencies (between 2 GHz and 5 GHz). The object appears to be correctly reconstructed, although the permittivity at the 

center of the plastic cylinder is slightly overestimated. Figure 2(b) reports the best reconstruction obtained using all the 

data (with frequencies from 2 to 10 GHz), and is related to the case @ = 2.3. Clearly, in this case, too, the method is able 

to correctly reconstruct the target. However, even if the dielectric permittivity of the plastic cylinder is closer to the actual 

one, several artifacts and ripples are present in the reconstructed image. 

 

4. Conclusions 
 

An experimental validation of a recently proposed approach has been reported in this paper. Such approach is based 

on a Gauss-Newton strategy incorporating a regularization in >? Banach spaces, which allows to obtain solutions 

characterized by a lower over-smoothness and less artifacts than standard Hilbert-space ones. The reported results show 

that, in the considered case, the new approach provide better results than standard inversion procedure developed in Hilbert 

spaces, especially when considering a limited set of data. Moreover, as expected, the use of a frequency hopping scheme 

leads to a significant reduction of the reconstruction errors. Further developments will be devote to evaluate the 

effectiveness of the approach when applied to some applicative scenarios. In particular, we are interested in preliminary 

assessing the applicability in the wood industry by using experimental data collected by the prototype of imaging system 

mentioned in the Introduction.  
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