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Abstract—Quantitative analysis of security properties in wire-
less communication systems is an important issue; it helps us get
a comprehensive view of security and can be used to compare the
security performance of different systems. This paper analyzes
the security of future wireless communication system from an
information-theoretic point of view and proposes an overall
security metric. We demonstrate that the proposed metric is more
reasonable than some existing metrics and it is highly sensitive
to some basic parameters and helpful to do fine-grained tuning
of security performance.

I. INTRODUCTION

The emerging of novel Internet applications and services
are shaping the future wireless communication systems into
an open and integrated service environment. A lot of efforts
are making this happen. For example, the architecture of LTE
leverages an all-IP network architecture to enable mobile oper-
ators to integrate the core with the access network, providing
real-time voice service and broadband IP services from the
core to the mobile station. WiiSE (Wireless IP/Internet Service
Environment) [1] proposed by China Mobile introduces an
evolutional architecture that extends the the flat architecture of
LTE-SAE with an aggregated base station and gateway entity
called WiiSE Node, adding more flexibility. These types of
future communication systems are envisioned to provide end
users with more convenience and in the meantime making
the network a flat and open environment for new innovations
to take place. While these visions of future communication
systems are brought into reality, they all are exposed to various
security design challenges. First and foremost, scalability is a
big challenge for security. Many legacy security designs do
not scale well when network size increases to a certain degree.
Secondly, the flat and highly distributed network architecture
will move some network capabilities closer to end users, hence
exposed to more risk than before. Further more, the open and
all-ip environment makes it easier and more cost-efficient for
the malicious to launch attacks.

Now that security is an indispensable issue for future wire-
less communication systems, much research and engineering
efforts devote to this topic. While new architectures and
designs are blooming, we still do not have an integrated way
to measure and compare their performance in-depth. As a
saying goes, if we cannot measure it, we cannot improve it.
However, security analysis techniques are far from satisfactory
in the literature. If we look at the content of the “security
consideration” section or many technical documents, we are

only able to get some high level understanding of security
issues and risks in using the designed architecture or protocols,
but how they perform overall and their impacts to the whole
system are not specified quantitatively.

The lack of a proper security metric hinders security design
in future wireless communication systems in many ways. First
and foremost, we fail to have an integrated way to measure
how those schemes perform overall, and cannot compare the
performance of the proposed schemes quantitatively. Secondly,
a good metric usually is able to imply a lot on how to improve
the design, without which arbitrary efforts sometimes will be
scattered over the plane without catching the most valuable
point.

With the above in mind, this paper proposes an information-
theoretic security metric for future communication systems.
The notion of “Entropy” is the central theme of Information
Theory. Entropy characterizes the uncertainty of random vari-
ables and also reflects the amount of information contained.
How to bridge the security performance with this information-
theoretic metric is an interesting problem. If we consider the
underlying secure scheme as a black box in the middle that
judges the validity of each input data, the security performance
of the scheme can be viewed as its ability to reduce the
uncertainty of the target input variable given its output. We
hence define a new security metric in this way and show that
it not only is helpful for administrator to do find-grained tuning
of the security performance but also performs better than some
existing security metrics.

II. AN ABSTRACT VIEW OF SECURITY

Let’s revisit the security of wireless communication systems
(WCS) from a very abstract level. If we view the system as a
functional black box in the middle, it receives input data from
the signal plane and the media plane and feeds its output to
the corresponding end points. Based on its security criterion,
the WCS may accept the input as normal or filter out the
data as intrusive. For example, authentication requests and
data packets for legitimate users will pass through the security
validation and be delivered to the other end point. On the
contrary, requests from invalid users will be discarded. From
a very abstract level, every input data has either an intrusive
or normal status. As in Figure.1, we model the input of WCS
as a random variable X , where X = 1 represents an intrusion
while X = 0 represents normal traffic. A base rate for attacks,
denoted as “B”, is used to characterize the apriori probability
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of attacks, i.e., P (X = 1) = B,P (X = 0) = 1 − B. The
output of the WCS is denoted as another random variable Y .
Y also has two statuses. Y = 1 means the data is discarded
as intrusion or does not reach its assumed destination, while
Y = 0 means the WCS delivers this data as normal.

As in Figure.1, an intrusion input has a probability P (Y =
0|X = 1) of being considered as normal by the WCS. This
is the False Negative rate (FN) denoted as β. Cryptography
schemes and authentication mechanisms are instant remedy
to this attack. Even though, mis-configuration of security
policy may cause illegal input accepted by the WCS. Also
attackers may compromise keys from valid users and inject
fake information into the network. This is generally considered
as the false negative attack in our model.

Similarly, a normal event also has a probability P (Y =
1|X = 0) of being considered as an intrusion. This is the
False Positive rate (FP) denoted as α. For example, mis-
configuration of routing policy may lead some packets not
able to reach the correct destination, such as prefix hijack
attack in BGP routing. This is generally considered as the
false positive attack in our model. We will use the notations
(B,α, β) throughout this paper.
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Fig. 1. Abstract Model Wireless Security

A. Need of a Good Metric

From the abstract model depicted in Figure.1, we can ob-
serve there already exist some metrics to measure the security
of WCS. For example, the false negative rate and false positive
rate. We may ask why these metrics are not enough for our
understanding of WCS security. The answer of this question is
not trivial. We would like to start with some intuitions about
a well-defined metric.

First, a good metric should be comprehensive. Like we
use Gross Domestic Product (GDP) to measure the economy,
the metric for WCS should also be comprehensive so that
it reflects the overall performance from many prospectives.
Secondly, it had better be highly sensitive to some base para-
meters, so that fine-grained tuning of the system performance
is possible. Last but not the least, a good metric should be
easy to compute. This is natural because we need to find a
good way to figure out the metric.

Existing metrics like the false positive rate α and false
negative rate β do not fulfill the above requirements; they
only reflect the performance of the system from one particular
perspective, thus not comprehensive enough.

We can also use some Bayesian metrics like the Positive
Predictive Value (PPV) and the Negative Predictive Value
(NPV) to measure the security performance of WCS. They
are defined as below.

Definition 1: The Bayesian positive detection rate (PPV) is
defined as:

PPV =
P (X = 1, Y = 1)

P (Y = 1)
=

B(1− β)
B(1− β) + (1− β)α

Definition 2: The Bayesian negative detection rate (NPV)
is defined as:

NPV =
P (X = 0, Y = 0)

P (Y = 0)
=

(1−B)(1− α)
Bβ + (1−B)(1− α)

Clearly PPV is the probability that WCS correctly filters
out intrusive data, while NPV is the probability that WCS
accurately accepts normal data. In terms of usability, they are
very important; the WCS is only useful only if it has high
PPV and NPV. Both PPV and NPV are functions of variables
(B,α, β). But each of them alone does not reflects the WCS’s
overall security performance. Actually PPV is not sensitive to
the false negative rate β, and NPV is not sensitive to the false
positive rate α. The next subsection will present the detailed
analysis.

Since existing metrics do not meet our requirements for
a good metric, we plan to design a new metric to measure
the overall security performance from an information-theoretic
point of view. Before present this metric, we first present the
basic background of Information Theory.

B. Information Theory Background

Definition 3: The entropy a discrete random variable X is
defined by [2]

H(X) = −
∑

x∈AX

p(x) log p(x)

where AX denotes the set of all possible values for variable X ,
with the convention that 0×log 1

0 = 0 since limθ→0+ θ log 1
θ =

0
The entropy of a random variable represents its “uncer-

tainty”. The more uncertain the X is, the larger the H(X).
H(X) achieves its maximum value log(|X|) when variable
X flows an even distribution among all the discrete values. If
any one value of X occurs with probability 1, H(X) = 0.

Definition 4: Let p(x, y) be the joint distribution of random
variables (X, Y ), then the conditional entropy of X given Y
is defined as [2]:

H(X|Y ) = −
∑

y∈AY

∑

x∈AX

p(x, y) log p(x|y)

The conditional entropy H(X|Y ) measures the average of
uncertainty that remains about X when Y is known. If X
is completely determined by the value of Y , H(X|Y ) = 0.
On the contrary, if X and Y are statistically independent,
H(X|Y ) = H(X), i.e., knowledge of Y does not help to
determine X .
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Definition 5: Consider two random variables X and Y with
a joint probability mass function p(x, y) and marginal proba-
bility mass functions p(x) and p(y). The mutual information
I(X;Y ) is defined as [2]:

I(X;Y ) =
∑

x∈AX

∑

y∈AY

p(x, y) log
p(x|y)

p(x)p(y)

Mutual information informs us the amount of information
shared between two random variables X and Y . The relation-
ship between the mutual information and entropy is shown as
below:

Theorem 1: The relationship between mutual information
and entropy:

I(X;Y ) = I(Y ;X) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Proof of this theorem can be found in [2]. Mutual informa-
tion measures the average reduction of uncertainty about X
that results from learning the value of Y , or vice versa. From
Theorem.1, we can obtain 0 ≤ I(X;Y ) ≤ H(X). When X
is completely determined by the value of Y , the uncertainty
of X has been removed, i.e., I(X;Y ) = H(X). When X is
independent of Y , the uncertainty of X is not affected even
if Y is known, i.e., I(X;Y ) = 0.

In retrospective of our abstract model of wireless commu-
nication security, the objective of WCS is to reduce the un-
certainty of input variable X given the output Y . The amount
of uncertainty reduction partially reflects the effectiveness of
the designed security scheme. We will elaborate on this later.

C. Information-theoretic Security Metric

Mutual information defined in Def.5 characterizes how
much uncertainty of random variable X is reduced after
another variable Y is known. This can be used to measure the
overall security performance of WCS. Ultimately the WCS is
to classify the input into two categories (intrusive or normal),
i.e., map the input variable X to output Y . For a fully
capable WCS, knowing the output variable Y must reduce
the uncertainty of the input variable X to a great extent (X
and Y share much mutual information). However, for a poorly
performed WCS, knowing of Y does not help us understand
X , or in other words, X and Y share little mutual information.

The formula R = I(X;Y )
H(X) reflects the ratio of uncertainty

reduction of variable X given Y . R was proposed to measure
the performance of Intrusion Detection System (IDS) in [3].
According to the end-2-end abstract view, WCS is quite similar
to IDS in the sense that they are both designed to identify each
data flow as normal or intrusive. But the metric R cannot be
used to measure the security performance of WCS directly,
because it does not take into account the “direction” of this
reduction as explained below. Not all uncertainty reduction
is good for the system. Actually the reduction of uncertainty
has two directions: It can be a reduction of its correctness
uncertainty, or a reduction of its incorrectness uncertainty.
For example, if one WCS is fully capable of accepting each
normal input and discarding each intrusive input, i.e., yi = xi,
knowing of the output Y fully reduces the uncertainty of X ,

then R = I(X;Y )
H(X) = 1. This is the good direction. If, on

the contrary, another WCS discards every truthful report and
accepts every bogus report, i.e., yi = x̄i. In this case Y also
totally determines X , so we also have R = 1. But clearly this
should have been the worst case in our model, and we should
avoid this phenomenon when figuring out a proper metric.

Actually the direction of uncertainty reduction has been
been characterized in the variable α and β. Smaller α and β
represent the right direction. If we consider multiplying I(X;Y )

H(X)
with 1−α and 1−β, we can get a synthetic performance metric
for the WCS as follows.

Definition 6: Let X be the random variable representing the
WCS input and Y the random variable representing its output.
The information-theoretic security capability CS is defined as:

CS = (1− α)(1− β)
I(X;Y )
H(X)

Note: there is a more detailed usage of CS in [4], where
false alarms in wireless sensor networks are modeled using
this metric.

The computation of CS is not difficult. Once we know the
(B,α, β), we can figure out CS easily using the following
procedures.

From Def.3, we can figure out the value of H(X) using
Eqn(1).

H(X) = −B log B − (1−B) log(1−B) (1)

From Def.4, we can figure out the value of H(X|Y ) using
Eqn(2).

H(X|Y ) = −
∑

y

∑
x

p(x, y) log p(x|y)

= −B(1− β) log
B(1− β)

B(1− β) + (1−B)α

− Bβ log
Bβ

Bβ + (1−B)(1− α)

− (1−B)(1− α) log
(1−B)(1− α)

(1−B)(1− α) + Bβ

− (1−B)α log
(1−B)α

B(1− β) + (1−B)α
(2)

Then using Theorem.1 and the above Eqn(1) and Eqn(2),
we can figure out CS easily, that is:

CS = (1−α)(1−β)
I(X;Y )
H(X)

= (1−α)(1−β)(1−H(X|Y )
H(X)

)

(3)
Theorem 2: The filtering capacity CS satisfies: 0 ≤ CS ≤

1.
This theorem is obvious, since all the multipliers in Eqn(3)

(1− α), (1− β) and I(X;Y )
H(X) are within [0, 1].

We assert the effectiveness of the proposed metric CS from
the following three aspects.

First we show that the CS behaves more reasonably than
the existing metric R . When α or β increases, the system
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absolutely behaves worse. A rational metric should reflect this
trend, however R fails to accomplish this. Figure.2 depicts
the value of CS and R respectively by fixing base rate at
B = 0.01 and α = 0.9 and ranging false negative rate β from
[0.1, 0.9]. Clearly CS declines smoothly when β increases. But
the value of R decreases when 0.1 ≤ β ≤ 0.5, and increases
when 0.5 ≤ β ≤ 0.9. Also, since we fix α = 0.9 (the overall
performance should be low), CS stays at a low value under
0.05 but R almost reaches 0.34 when α = β = 0.9. From
these, we assert that CS is more rational than R.
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Fig. 2. Comparison with an existing metric

Secondly, Figure.3 compares the proposed metric CS with
Bayesian positive rate PPV in terms of their sensitivity to
the false negative rate β. We fix the Base rate B = 0.0001
and depict four curves with the false positive rate α equals to
0.001, 0.005, 0.01, 0.05 respectively. When β ranges from 0.1
to 0.9, we plot the value of CS and PPV in Figure.3(a) and
Figure.3(b) respectively. We see that CS poses a reasonably
decline when β increases, but PPV only varies between a
very small range between [0, 1]. This proves that CS is more
sensitive to β than PPV.
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Fig. 3. Comparison of CS and PPV , in terms of their sensitivity to False
Negative Rate β

Similarly, we compare CS with Bayesian negative rate NPV
in terms of their sensitivity to the false positive rate α. By
fixing the base rate at B = 0.001, Figure.4 plots four curves
of CS and NPV respectively when α ranges from 0.01 to 0.09.
Clearly, when α increases, CS decreases evidently. However,
NPV is not able to reflect changes in α; it stays stably between
[0.999, 1]. As a result, CS is more sensitive to the false positive
rate α than NPV.

From the above analysis, we show that our proposed metric
CS is more sensitive to the basic parameter α and β than NPV
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Fig. 4. Comparison of CS and NPV , in terms of their sensitivity to False
Positive Rate α

and PPV respectively. The sensitivity to the basic parameters
is very important for a good metric since it is helpful to do
fine-grained tuning of the system’s overall performance. CS

characterizes the intrinsic performance of a wireless security
scheme from an information-theoretic view. It is not only
valuable for us to measure how a WCS performs overall under
security breaks, but also gives us hints on how to improve its
performance.

III. CONCLUSION

Security measurement of wireless networks is an important
issue. We have raised the question of quantitative security
analysis in this paper. To this end, we have proposed an
information-theoretic security metric for future wireless com-
munication systems. This metric reflects the overall security
performance from many perspectives. We have demonstrated
that it is more reasonable than some existing metrics and it is
highly sensitive to some basic parameters and helpful to do
fine-grained tuning of security performance. We believe that
quantitative security analysis is an indispensable component
of the security evaluation framework and also represents an
effective way to improve the security design in wireless
physical and higher layers.
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