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1. Introduction

Aperture Synthesis Imaging Radar (ASIR) is the technology, code-named EASI 3D, adopted by the
EISCAT 3D project, that will give the new radar system imaging capabilities in 3-dimensions including
sub-beam resolution in the plane across the transmitter antenna beam. When complemented by pulse
compression techniques, it will provide 3-dimensional images of certain types of incoherent scatter radar
targets with resolution of the order of 100 metres at 100 km range in any direction illuminated by the
transmitter beam. The cross-beam resolution will vary as the inverse of the range squared. This ability
will open new research opportunities to map small structures associated with non-homogeneous, non-steady,
unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural
Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris,
and possibly others.

2. Aperture Synthesis Imaging Radar

Aperture Synthesis Imaging Radar (ASIR) [1, 2] is closer to the technology used by radio astronomers
(VLBI, Very Long Baseline Interferometry) to image stellar objects [3] than to the SAR (Synthetic Aperture
Radar) technique used onboard airplanes and satellites to map the Earths surface and other planetary
surfaces. In the radio astronomy case the source itself spontaneously emits radiation that is collected by a
number of passive antennas. In the former, the radar transmitter—acting like a camera flash— illuminates
the target (the ionosphere or atmosphere) and a number of antennas collect the scattered radiation—exactly
as in the radio astronomy case. From this point on, the two cases are essentially identical (although Earth’s
motion in the radioastronomy case is an important difference).

Under the assumption of small angle distribution of the source as seen from the measurement plane,
which is the normal case, the radiation scattered by the sources projects a distribution of varying electric fields
on planes transverse to the propagation direction (plane wave approximation) as the radiation propagates,
that is, a diffraction pattern. All the information on the image is contained in this field distribution. It is
straightforward to show that the spatial correlation function of the electric field distribution, under the very
important assumption that the source distribution is completely incoherent, contains all the information
to extract the image via a two dimensional Fourier transform. This is the essence of the van Cittert-
Zernike theorem of optics [4]. In the parlance of imaging, the field distribution correlation function is called
the Visibility Function V (u, v), and its Fourier transform, that is, the image, the Brightness Distribution
B(l,m), where the uv-coordinates, expressed in units of wavelength, are on the plane of measurement and
the lm-coordinates are the angular coordinates of the image expressed as directional cosines subtended from
the plane of measurement. That is, the image is the angular spectrum of the source’s intensity as projected
on the plane of measurement:

B(l,m) =

∫∫
V (u, v)e2πi(ul+vm)du dv. (1)

A minor factor, introduced by the third angular coordinate, has been omitted in this expression. This factor
is constant within the assumption of small angle source distribution, and is easily corrected. ASIR is carried
out by providing a means to measure the spatial autocorrelation function of the field distribution on the
measurement plane, that is, the visibility function. This is carried out by distributing a number of receiving
antennas to sample the electric (or potential, i.e. voltage) field distribution on the uv-measurement plane.
The pairwise sets of antennas are called the baselines. Due to sampling, and other minor measurement
dependent distortions, the equivalent discrete application of (1) produces unsatisfactory images, usually
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with insufficient quality to be of any use. Carefully crafted inversion algorithms are necessary to restore the
raw images that are produced by a simplistic Fourier transform.

3. Image Inversion

In practical applications, the measured visibility function is discrete uneven and truncated and often
also sparse. Under this conditions Eq. (1) has to be modified [5]:

BD
ω (l,m) =

∫∫
Vω(u, v)S(u, v)e

2πi(ul+vm)du dv (2)

where S(u, v) is the sampling function and BD
ω (l,m) is the dirty image. A subscript ω has been added, since

the measurements are usually done for various small intervals of frequency, that is images can be obtained
at once for different ‘colour’ components. The restoration of the image involves two operations, namely
deconvolution and Fourier transformation. Using the convolution theorem:

BD
ω (l,m) = Bω ⋆ G (3)

where the star operator denotes convolution and the point spread function (also called synthesised beam, or
impulse response, or Green’s function) G(l,m) is the Fourier transform of the sampling function:

G(l,m) =

∫∫
S(u, v)e2πi(ul+vm)du dv. (4)

There are two other effects that distort the measured brightness that are usually small and will be ignored
in this treatment for the sake of clarity. These are the finite width of the antenna beam elements and the
finite bandwidth of the receivers. The correction for the former is unproblematic while the effects of the
latter can be made negligible by using sufficiently narrow bandwidths.

The problem of image restoration is how to deconvolve Eq. (3) to obtain the clean brightness distribu-
tion. The deconvolution as such cannot reproduce the true visibility, and cannot be even performed, because
the problem is highly singular: Vω = V D

ω /S, where V D
ω is the measured visibility. The sampling function

S is a very spiky function (δ-functions) with regions of the uv-plane in-between where no measurements
were made. Thus, the division by S is undefined over these regions because S is zero in those regions. This
implies, in strict terms, that the actual visibility is unrecoverable, and so is the brightness distribution. In
mathematical terminology, the problem is the inversion of an operator equation that is non-homogeneous
and has a non-empty null or kernel space, that is, the homogenous solution is non-empty. The latter are
the solutions that map to the value zero resulting from the discrete sampling (the non measured points,
which is a dense set). These are called the invisible distributions [5] which the sampling function maps to
zero. Briefly, if BD is a solution of the non-homogeneous equation (the dirty image), so is BD + αI, where
I represents solutions of the homogeneous equation (the invisible distributions) and α an arbitrary number.
In real applications, the kernel space, to which I belongs, is a large space of functions. The art of image
inversion is to design algorithms that make a judicious choice among the invisible distributions to obtain
a restored image. This task cannot be carried out with linear operations. Thus image inversion is intrin-
sically a non-linear problem. Ultimately the measure of success of image restoration amounts to adopting
a proper choice strategy to pick out one member of the invisible distributions. This amounts invariably to
extrapolation.

A common misconception is that pure incoherent scattering signals, such as the ones obtained from
electron fluctuations of the ionospheric plasma, are not apt to interferometric imaging techniques, as is the
case of ASIR. In fact, a necessary condition for interferometric imaging is that the source be completely
incoherent, as has been mentioned above. In a plasma, the coherence length is approximately equal to
the Debye length, which for the ionosphere is typically of the order of some centimetres at most, much
smaller than the wavelengths employed which run in the metre scale. This property is in fact the one that
makes possible multiple pulses and pulse coding techniques to work effectively for the improvement of range



resolution. Sources of coherent radiation (light) are rare in nature. Lasers and masers are some of the
exceptions.

4. The Maximum Entropy Method (MEM) Applied to Image Inversion

The unavoidable presence of noise forces a degree of ambiguity in any case, even if the visibility is
sampled to perfection. The task is now to construct a numerical algorithm that narrows the choice in a
systematic manner employing sensible choice criteria (constraints) and using a priori information whenever
available. The expectation is that among a certain class of solutions there will be one or a few solutions
that represent the true image in a satisfactory manner. Fortunately, this turns out to be the case. One such
methodology is the CLEAN algorithm [6, 7] which is a heuristic iterative procedure based on the assumption
that the image is composed of a set of point sources (targets). Another approach that has a more developed
mathematical foundation is the Maximum Entropy Method (MEM).

The MEM makes a choice among the invisible distributions by maximising the entropy among all the
accessible images that belong to the solution null space. This is tantamount to making a choice of the image
among those with the maximum multiplicity, that is, those that probabilistically will occur most often. The
procedure is similar to Boltzman’s procedure to find the distribution of the most probable states of a gas
in thermal equilibrium, that is, Boltzman’s H-function of statistical mechanics. In contrast to statistical
mechanics where the entropy function is uniquely determined by mechanical dynamics, it is by no means
obvious of what form the entropy function should be in general optimisation problems such as in image
inversion. One discrete form, among the many that can be found in the literature [6], is the following:

H = −
∑
k

Bk ln
Bk

eMk
(5)

where Bk are samples of the brightness, ln is the natural logarithm, e = 2.71 . . . its base, and Mk is a default
image that allows the introduction of a priori information. Scientists at the Jicamarca Radio Observatory
have used a more elaborated and improved version of the MEM to obtain images of ionospheric plasma
turbulence with considerable success [8]. Briefly, the numerical problem is to find an extremum of the
following functional, using Hysell’s notation and the Einstein summation convention:

E[f(ej , λj ,Λ, L)] = S + λj(gj + ej − fihij) + Λ(e2jσ
−2
j − Σ) + L(Iifi − F ) (6)

where f is the sought after brightness distribution, S = −filn(fi/F ) is the entropy, Ii is a vector of ones,
F = Iifi is the integrated (total) brightness, gj is the measured visibility, hij is the point spread function that
contains the Fourier kernel, ej are the random errors, σ2

j are the (theoretical) expected error variances, and
Σ parametrizes the error norm, effectively constraining it. The remaining quantities are Lagrange multipliers
as follows. The λj define the fundamental constraint on the entropy functional by relating the measured
visibility (including the random errors) to the sought after brightness that makes the entropy functional
an extremum. The other Lagrange multipliers put additional constraints that typically would ensure an
improvement of the quality of the final solution: Λ puts a bound on the error norm equal to a preset value
equal to Σ; and L constrains the total brightness effectively ensuring that the solution will be positive semi-
definite (non-negative). An implementation of the algorithm for EASI 3D has been tested on simulated data
and on real world data taken with the Jicamarca Radar.

5. Some Implications of Imaging as a Fourier Transform

Since, in principle, the relationship between the brightness distribution and the visibility function
is a Fourier transform, there are several general consequences that are very useful to investigate in order
to define a viable and good experimental design. The sampling theorem states that the sampled function
must be band limited in order to avoid aliasing. Indeed, the measurement procedure in a natural manner
ensures the compliance with this condition since the finite width of the antenna beams plays the role of an
anti-aliasing filter. Furthermore, the tapered nature of the beam pattern plays the useful role of windowing



that reduces sidelobes introduced by the truncation of the field of view (at the expense of losing some angular
resolution). The farthest baselines determine the angular resolution along the baseline direction, while the
shortest baselines determine the angular extent of the image. To attain the expected across-beam resolution
for EISCAT 3D, it will be necessary to deploy smaller antenna modules outside from the main core antenna.

6. Applications of EASI 3D to some Incoherent Scatter Targets

Numerous dynamic phenomena at high latitudes are characterised by small scale structures that
are not resolved by conventional radar techniques. Provided that the radar signals produced by these
irregularities have a combination of sufficient signal-to-noise-ratio (SNR) and stationarity time, the 3-D
imaging technique can provide important information for the investigation of the phenomena. A case in
point at high latitudes is the small structure of electron density that is produced by auroral precipitation.
Filamented structures with scales of tens of metres have been resolved by optical means. The possibility
of radar imaging these filaments is helped by the large enhancements of electron density occurring during
aurora, although time variability may limit the sharpness of the measured images. Other examples are polar
mesospheric summer and winter echoes (PMSE and PMWE), upper tropospheric and lower stratospheric
radar scatter produced by atmospheric turbulence, numerous types of small scale structures induced by
artificial RF heating of the ionosphere, Natural enhanced ion acoustic lines (NEIALs), space debris, meteors,
and possibly others.
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1. Kudeki, E., and F. Sürücü, “Radar Interferometric Imaging of Field-aligned Plasma Irregularities in the
Equatorial Electrojet”, Geophys. Res. Lett., 18(1), 1991, pp. 4144.

2. Woodman, R. F., “Coherent radar imaging: Signal processing and statistical properties”, Radio Sci.,
32(6), 23732391, 1997.

3. Taylor, G.B. (Ed.), C. L. Carilli (Ed.) and R. A. Perley (Ed.), Synthesis Imaging in Radio Astronomy II,
ASP Conference Series, Vol. 180; xxxiii, 704p; California, USA; ISBN 1583810056, 1999.

4. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and
Diffraction of Light, Cambridge University Press, ISBN 978-0521639217, 1997.

5. Bracewell, Ronald, Fourier Analysis and Imaging, Springer ISBN: 978-0-306-48187-1, 2004.

6. Cornwell, T., R. Braun and D. S. Briggs, Chapter 8. Deconvolution; in Synthesis Imaging in Radio
Astronomy II, Ed. G.B. Taylor, C.L. Carilli and R.A. Perley, A.S.P. Conf. Ser. Vol. 180, 1999.

7. Högbom, J.A., “Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines”, As-
tronomy and Astrophys. Suppl., Vol. 15, 1974, pp. 417-427.

8. Hysell, D. L., and J. L. Chau, “Optimal aperture synthesis radar imaging”, Radio Sci., 41, RS2003,
doi:10.1029/2005RS003383, 2006.


