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Abstract—We report on our research on diversity performance
of compact antenna arrays where the distance between neighbor-
ing antennas is (much) less than half a wavelength. In contrast to
common belief, such compact arrays are able to deliver excellent

diversity performance provided that a multiport network is con-
nected between the array and the receiver which decouples the
antenna ports. It turns out that the diversity performance does
not change much as the antenna separation is reduced below half
a wavelength – in fact, the diversity performance even increases

somewhat with reduced antenna spacing. In an isotropic noise
environment, and in the absence of heat loss, excellent diversity
performance can be maintained even as the antenna separation
is made arbitrarily small.

I. Introduction

The electromagnetic waves which are emitted by a transmitter
excite numerous scattered waves from obstacles which do not
happen to be small compared to the wavelength. When there
is relative mobility between the source and the obstacles, each
scattered wave will have a slightly di�erent frequency due to
the Doppler e�ect. Their superposition therefore makes for a
time-varying signal strength at a receive antenna, showing the
characteristic occasional deep fades due to destructive super-
position. A common attempt to lower the chance of such deep
fades is to use antenna diversity, where the signals from several
antennas are combined. If the antennas are spaced su�ciently
far apart, chances are that the respective signal amplitudes will
be (almost) uncorrelated and simultaneous deep fades become
much less likely, thereby improving link reliability [1].

The amount of correlation between antenna signals essen-
tially depends on two factors: 1) the angular distribution of
the scattered waves, or more abstractly, on the angular power
density, and 2) on the antenna separation [2]. In general, re-
ceiving substantial amount of power from a wide range of
angles tends to make for low correlation, as does a large sepa-
ration of antennas, preferably by several wavelengths [3]. Now
in a compact antenna array, the distance between neighbor-
ing antennas is (much) smaller than half a wavelength. This
close spatial proximity makes neighboring antennas perceive
similar incident electromagnetic �elds such that the correla-
tion of antenna signals is expected to increase. Small antenna
separation is, therefore, expected to lower the e�ectiveness of
diversity combining, and ultimately, rendering diversity com-
bining completely ine�ective, as the antenna separation inside
the array is reduced further towards zero and the antenna sig-
nals become coherent.

The standard argument given above ignores the electromag-
netic interaction of closely spaced antennas. The electric cur-
rent �owing in one antenna excites its own electromagnetic
�eld which is felt and responded to by the other antennas
in the array. This results in strong mutual antenna coupling
in compact arrays. It turns out that this mutual antenna cou-

pling has some, perhaps surprising, e�ects. For an array of
two isotropic radiators, we show that with the help of a lossless
decoupling network, the array essentially retains all of its diver-
sity performance as the antenna separation is reduced from half
wavelength towards zero. Such antenna arrays with decoupling
network are realizations of multimode antennas [4].

II. DiversityMeasure

We quantify diversity performance by means of the so-called
diversity measure [5]. To this end, let

u = hs + n (1)

be a vector of N noisy »copies« of a signal s, received over dif-
ferent diversity branches (say from N di�erent antennas). The
components of the vector n are samples of complex, circularly
symmetric, zero-mean, Gaussian noise with correlation matrix
Rn = E[nnH]. Diversity combining of all N signals yields:

ŝ = wH
u, (2)

where the combining vector w ∈ CCN×1 can be chosen to maxi-
mize the signal to noise ratio (snr) of the combined signal ŝ.
One �nds for the optimum w = R

−1
n
h, and therefore the signal

to noise ratio becomes:

snr =
E[∣ŝ∣22 ∣ n = 0, h]
E[∣ŝ∣22 ∣ s = 0] = σ 2

s h
H
R
−1
n h, (3)

where σ 2
s = E[∣s∣2]. The diversity measure is then de�ned as:

D =
(E[snr])2
Var[snr] . (4)

Clearly, the larger the diversity measure D is, the smaller is
the relative �uctuation of the snr around its mean value. Be-
cause achieving a small relative �uctuation is the very goal
of diversity combining, a larger value of D means a better
diversity performance. In this paper, we restrict the discussion
to the case of Rayleigh fading, such that h contains zero-mean,
complex, circularly symmetric Gaussian random entries. With

Ψ = const ⋅ E[hhH]R−1
n
, (5)

where const is an arbitrary non-zero constant, one obtains for
the diversity measure the following simple expression:

D = D(Ψ) = (trΨ )2
trΨ 2

. (6)

It holds true that 1 ≤ D(Ψ) ≤ rankΨ . Note that Ψ can also be
written as:

Ψ = const ⋅ E[uuH ∣n = 0]R−1
n
, (7)

i.e., as the (scaled) product of the correlation matrix of a noise-
free version of the received signal, and the inverse of the noise
correlation matrix.
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Figure 1: Left: Array composed of two isotropic radiators and a point P in the far-�eld described by spherical coordinates.
Center: Angle-spread of impinging wavefronts. Right: Multiport model of antenna array and decoupling network.

III. SystemModel

We consider an array of two isotropic radiators placed on the
y-axis of a Cartesian coordinate system, centered in its origin
and separated by a distance d, as shown on the le� hand side
of Figure 1. There shall impinge signal wavefronts exclusively
from within a cone with opening angle ∆φ, as shown in the
center of Figure 1. The antenna mutual coupling is taken care
of by modeling the array as a linear twoport, characterized by
its impedance matrix ZA ∈ CC

2×2
⋅Ω, in series with a voltage

source at each port, such that the vector uA = [uA,1 uA,2]T of
the antenna port voltages equals:

uA = ZA iA + uS + ũN , (8)

wherein uS = [uS,1 uS,2]T is the vector of open-circuit voltages
induced into the antennas as a result of the impinging signal
wavefronts, and ũN = [ũN,1 ũN,2]T is the vector of open-circuit
noise voltages received by the antenna, while iA = [iA,1 iA,2]T
is the vector of antenna port currents. When the background
noise impinges on the array isotropically, it can be shown that
the open-circuit antenna noise voltage vector ũN ∈ CC

2×1
⋅V, has

the correlation matrix [6]:

E [ũNũ
H
N] = 4kTA∆f Re{ZA} , (9)

where k is the Boltzmann constant, TA is the noise temperature
of the antenna, and ∆f is the bandwidth. The noisy antenna
ports are connected to the inputs of a lossless, reciprocal match-
ing network, which operation shall be described by:

[ uB

uA
] = ZM [ iB

−iA
] . (10)

Herein, uB = [uB,1 uB,2]T , and iA = [iB,1 iB,2]T are the vectors
of the port voltages and port currents at the matching net-
works’ output, as shown on the right hand side of Figure 1.
When the impedance matrix ZM is chosen as:

ZM =

⎡⎢⎢⎢⎢⎣
j Im{Zout} I2 j

√
Re{Zout}Re{ZA}1/2

j
√
Re{Zout}Re{ZA}1/2 −jIm{ZA}

⎤⎥⎥⎥⎥⎦ ,
(11)

the output ports of the matching network become electrically
decoupled and present an output impedance of Zout. They are
connected to two independent noisy receive ampli�ers, each
of which modeled, in the usual way [7], by its input resistance

R, a noise voltage source uN, j , and a noise current source iN, j ,
with j ∈ {1, 2} and the statistical properties:

E[iN iHN] = β I2 ,

E[uNu
H
N] = βR2

N I2 ,

E[uN i
H
N] = ρβRN I2 .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(12)

Herein, uN = [uN,1 uN,2]T, iN = [iN,1 iN,2]T, while β ∈ RR+ ⋅A
2

is the variance of the receiver noise current within the band-
width ∆f , RN =

√
E[∣uN, j ∣2]/E[∣iN, j ∣2], is the noise-resistance

of the receive ampli�ers, while the complex noise correlation
equals ρ = E[uN, j i

∗
N, j]/√E[∣uN, j ∣2] ⋅ E[∣iN, j ∣2].

The vector u = [u1 u2]T contains the two noisy observable
output voltages u1 and u2, which are shown on the right hand
side of Figure 1. From circuit analysis one �nds that

u =
jR
√
Re{Zout}

R + Zout

Re{ZA}−1/2 uS + n, (13)

where n ∈ CC2×1
⋅V is the noise voltage with covariance matrix:

Rn = E[nnH] = σ 2
n I2 . (14)

That is, the observed output noise is uncorrelated with identi-
cal variance:

σ 2
n =

βR2

∣R + Zout∣2 (∣Zout∣2 − 2RNRe{ρ∗Zout} + R2
N +

+

4kTA∆f

β
Re{Zout}) ,

(15)

The output impedance Zout can be chosen such that the signal
to noise ratio of u1 and u2 is maximized. It turns out that this
is achieved when Zout is set to the value [8]:

Zopt = RN ⋅ (√1 − (Im{ρ})2 + j ⋅ Im{ρ}) . (16)

This makes for

E[uuH ∣n = 0]R−1n = Re{ZA}−1/2 E[uSu
H
S ]Re{ZA}−1/2

4kTA∆f nfmin

,

(17)
where nfmin = 1 + βRN(√1 − (Im{ρ})2 − Re{ρ})/(2kTA∆ f ),
is the minimum noise �gure of the receiver. Note that only
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the real-part of the array impedance matrix ZA a�ects (17).
For two isotropic radiators, it equals [8], [9]:

Re{ZA} = RrC , with C = [ 1 sin(kd)/(kd)
sin(kd)/(kd) 1

] .
(18)

Herein Rr is the radiation resistance, and k = 2π/λ, where λ is
the wavelength. When we substitute (18) into (17), we can ob-
tain by comparison with (7), the following simple expression
for the matrix Ψ:

Ψ = C
−1/2

ΦC
−1/2 , where Φ = E [uSu

H
S ] , (19)

provided that we set the non-zero constant in (7) conveniently
to the value 4kTA∆f Rrnfmin. Notice that Φ is the correlation
matrix of the open-circuit array signal voltage vector.

IV. Modeling Angle Spread

To proceed further, we now have to compute Φ as a function
of the angle-spread parameter ∆φ (see center of Figure 1), and
the antenna separation d. To this end, think of a dipole an-
tenna located in a point P well in the far-�eld (see le� hand
side of Figure 1), which excites at the two antennas of the
array the electric incident �elds:

E⃗
inc

n = e⃗
incα′e−jkrn /rn , (20)

where e⃗inc describes the polarization, α′ is proportional to the
excitation current of the dipole, and rn is the distance to the
respective antenna, with n ∈ {1, 2}. In so-called canonical min-
imum scattering antennas [10], [11], a zero port current leads
to zero current density everywhere in the antenna structure,
such that no scattered �eld results. Assuming that the array
antennas are of this type, there is only the incident electric
�eld present when the port currents are zero. Therefore, the
open-circuit voltages can be written as:

uS,1/2 = α̃ e⃗0 ⋅ E⃗
inc

1/2 , (21)

where α̃ is an antenna speci�c constant, and the unit vector e⃗0
describes the polarization of the antennas. With the spherical
coordinates θ and ϕ de�ned on the le� hand side of Figure 1,
one obtains:

r1/2 = r ∓ 1⁄2d sin(θ) sinϕ, for r ≫ d . (22)

Thus, by substituting (22) into (20) and the latter into (21):

uS = α ⋅ a(θ , ϕ), where a(θ , ϕ) = [ e j1⁄2d sin(θ) sin ϕ

e−j1⁄2d sin(θ) sin ϕ ] , (23)

and α = α̃α′ e⃗0 ⋅ e⃗
ince−jkr/r. With multiple transmitting anten-

nas one obtains a linear superposition of the respective indi-
vidual voltages:

uS =∑
n

αna(θn , ϕn), (24)

where (θn , ϕn) describes the direction of the n-th remote an-
tenna, and αn is proportional to its excitation current. Now
we model the αn as mutually uncorrelated random variables,
such that E[αnα

∗
m] = γnδn ,m , where δn ,m is unity for m = n,

and zero else. Hence,

Φ = E[uSu
H
S ] =∑

n

γna(θn , ϕn)aH(θn , ϕn). (25)

In the limit of in�nitely many sources, one obtains the correla-
tion matrix of a continuous distribution of impinging waves:

Φ = E [uSu
H
S ] = ∫ 2π

ϕ=0
∫

π

θ=0
γ(θ , ϕ)a(θ , ϕ)aH(θ , ϕ)dθdϕ.

(26)
Because

Φn ,n = E[∣uS,n ∣2] = ∫ 2π

ϕ=0
∫

π

θ=0
γ(θ , ϕ)dθdϕ, (27)

we can appreciate that the term γ(θ , ϕ)dθdϕ is proportional
to the power that can be received from the directional window
between θ and θ + dθ, and ϕ and ϕ + dϕ. Writing this same
power as the product of the power density (power per unit
area) P′(θ , ϕ), and the in�nitesimal area dA = r20 sin(θ)dθdϕ,
it follows that

γ(θ , ϕ) ∼ P′(θ , ϕ)r20 sin(θ). (28)

Herein, r0 is a �xed radius of a sphere around the array, at
which surface the power density P′(θ , ϕ) is to be evaluated.
Hence,

Φ = const ∫
2π

ϕ=0
∫

π

θ=0
P′(θ , ϕ)a(θ , ϕ)aH(θ , ϕ) sin(θ)dθdϕ.

(29)
Referring to the center of Figure 1, the power density P′(θ , ϕ)
shall be constant for all 0 ≤ θ ≤ ∆φ/2 and all 0 ≤ ϕ ≤ 2π, and
zero elsewhere. In this way, one obtains from (29):

Φ = σ 2
S [ 1 ρS

ρS 1
] , where ρS =

∫
∆φ/2

0
J0(kd sin θ) sin(θ)dθ

2 sin2(∆φ/4) .

(30)

The term σ 2
S denotes the variance of the array’s open-circuit sig-

nal voltages, and ρS is their correlation coe�cient, while J0(⋅)
is the Bessel function of the �rst kind and zero-th order. No-
tice that limkd→0 (ρS) = 1, that is, the open-circuit array volt-
ages become coherent as the electric distance kd = 2πd/λ is re-
duced towards zero. This is the reason behind the widespread
belief that compact antenna arrays have poor diversity perfor-
mance. This conjecture is, however, not justi�ed because it is
not the Φ matrix which tells about the diversity performance,
but rather the matrix Ψ given in (19).

V. Diversity of Compact Arrays

To judge the diversity performance of the array we have to
look at the correlation matrix Ψ from (19). Substituting (30)
into (19), one obtains with the help of (18) and

[ 1 Θ
Θ 1

]−1/2 [ 1 ρS
ρS 1

] [ 1 Θ
Θ 1

]−1/2= 1

1 − Θ2
[ 1 − ρSΘ ρS − Θ
ρS − Θ 1 − ρSΘ

] ,
(31)

the following simple expression for Ψ :

Ψ = σ 2 [ 1 ρ
ρ 1
] , where ρ =

ρS − j0(kd)
1 − ρS j0(kd) (32)

is the relevant correlation coe�cient. Herein, we have intro-
duced j0(x) = sin(x)/x for notational convenience. The vari-
ance σ 2

= σ 2
S ⋅ (1 − ρS j0(kd)) / (1 − j20(kd)).
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Figure 2: Left: Diversity measure D0(∆φ) of the in�nitesimal array (kd → 0) as function of angle spread. Right: Diversity
measure D(Ψ) as function of antenna separation for di�erent angle spreads.

A. Supercompact Arrays

Let us look into the extreme case of the in�nitesimal array,
where kd → 0. Substituting the expression for ρS from (30)
into (32) one obtains:

Ψ0 = lim
kd→0

Ψ = σ 2
0 [ 1 ρ0

ρ0 1
] , (33)

where

ρ0 =
4 cos2(∆φ/4) cos(∆φ/2)
7 − 2 cos(∆φ/2)− cos∆φ (34)

is the correlation coe�cient for the in�nitesimal array, and the
variance σ 2

0 = σ
2
S ⋅ (7 − 2 cos(∆φ/2)− cos∆φ)/8 ≥ σ 2

S /2. When
we put (34) into (33) and the latter into (6), the diversity mea-
sure for the in�nitesimal array becomes:

D0(∆φ) = lim
kd→0

D(Ψ) = D(Ψ0) =
=

2 (7 − 2 cos(∆φ/2)− cos ∆φ)2
55 − 20 cos(∆φ/2)− 8 cos(∆φ)+ 4 cos(3∆φ/2)+ cos 2∆φ ,

(35)

which is shown in graphical from on the le� hand side of Fig-
ure 2. Note that D0(∆φ) is strictly increasing with increasing
angle spread. For a moderately large angle spread of ∆φ ≈ 72○

the diversity measure has climbed to a fairly large value of 1.5.
As the angle spread is increased further, the diversity measure
raises towards its maximum value of 2, which it achieves for
∆φ = 180○.

B. Compact Arrays

While the limit kd → 0 is interesting from a theory point of
view, the cases of small but �nite kd are more interesting in
practice. The right hand side of Figure 2 shows the diversity
measure D(Ψ) as a function of antenna separation d/λ for a
number of di�erent angle spreads. Clearly, the diversity per-
formance is essentially unchanged as the antenna separation is
reduced from half a wavelength towards zero. In fact, the di-
versity measure even slightly increases. Note that for an angle-
spread of ∆φ = 180○, the diversity measure exactly equals 2 (its
maximum value) independent of the separation d/λ.

VI. Conclusion

We have found that compact antenna arrays with less than
half a wavelength separation between neighboring antennas
are perfectly able to deliver excellent diversity performance.
This comes about because of the joint e�ect of mutual antenna
coupling in conjunction with a properly designed decoupling
multiport which is connected between the antenna ports and
the receivers. With isotropic background antenna noise, and in
the absence of heat loss, the diversity performance is limited
only by the angle spread of the impinging wavefronts but not
by the antenna separation inside the array.
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