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Abstract 
 
 We report on the self-consistent analysis of armchair graphene nanoribbon (GNR) field-effect transistors (FET), 
in the case of multi-band coherent carrier transport. In principle, the same approach can be extended to include the 
contribution to charge transport due to different layers of a few-layer GNR-FET. To the aim of demonstrating the 
versatility of our simulation tool, we provide interesting examples about the dependence of charge and self-consistent 
potential on the gate voltage, for small drain voltages: these include details of numerical convergence of the iterative 
system of Poisson and Schrӧdinger equations. 

 
1. Introduction 

 
 In recent years, the technological relevance of graphene, made of carbon atoms packed in a 2D-honeycomb 
lattice, has been highlighted in the literature: graphene is likely to become competitive and compatible with the 
established silicon technology for applications to electronics.  
Our analysis is focused on graphene nanoribbons (GNR), that is, narrow strips of graphene. The importance of this issue 
is reflected by a variety of works, both experimental [1-4] and theoretical [5-7]. The analysis of GNR can be carried out 
by a variety of models, [8-11], able to solve, in principle, even complicated problems such as, for example, the effects 
on charge transport of applied external electric and magnetic fields [12], bending [13], lattice defects, discontinuities, 
and edge terminations [14], and so on. The reasons for the success of these models reside in that they make use of quite 
good and well verified assumptions, two in particular: - transport is ballistic due to low-dimensionality and high purity 
of carbon lattice, - electron interaction is weak owing to the relatively long distances involved in charge displacement. 
In fact, we are not dealing with molecular devices, where the above assumptions may not hold and a Fock-space picture 
of quantum channels may be needed. Using ab initio density functional theories, where the bands are filled self 
consistently, may be necessary when fine effects are to be highlighted, such as, for example, a detailed description of 
electronic dispersion of GNR around the Fermi level. However the latter methods requires high computational 
resources, and can hardly include external electric fields. 
We make use of a multimode approach to quantum transport, allowing easy simulation of very large structures, despite 
the possibly high number of electronic channels involved. The linear charge and the current are computed by solving 
separately the Schrödinger equation for  any sub-band, each one with its respective effective masses. However, even 
though the wavefunctions of different channels are not spatially coupled, they are coupled through the Poisson equation, 
since they all contribute to the source charge for the self consistent potential. 
At the chosen low energies, the contribution of the sub-bands is very small but this does not lower the generality of the 
approach. 
 

 
2. GNR-FET modelling 

 
We start by recalling the basic points of the approach widely used, in the literature, in analysing the behaviour of a 

single-wall CNT surrounded by a cylindrical gate electrode and with left/right terminations contacted by source/drain. 
A self consistent solution of the system of Poisson and Schrödinger equations directly provides both the linear charge 
along the GNR, which is considered as wire of negligible thickness, and the electrostatic potential along the GNR: 
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where V is the electrostatic potential, ψ is the z-dependent wave-function of a hole (electron) of energy E, travelling 
under the effect of a local potential energy Uh (Ue), Q is the nanotube linear charge density, which is given by the 
difference between electron and hole charges, diffused from drain and source, m is the appropriate effective mass of the 
considered band. We refer to the gate-source and drain-source voltages as Vgs and Vds respectively. 
A self-consistent solution of the equations (1) and (2) is achieved when 
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Here the symbol “=” indicates the convergence of an iterative scheme, that is reached when charge and potential differ 
from their values calculated at the previous step by less than a very small percentage. The Landauer-Büttiker formula is 
used to calculate the total current flowing through the GNR: 
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In (4), e is the electron (hole) unit charge for Ie (Ih), h is the Plank’s constant, Te (Th) is the transmission probability 
through the channel for the electrons (holes) and fs,d is the Fermi function at the source and drain. 
As already mentioned, the above model is extended here to include the contribution of any sub band. Only electron 
transport is considered here: the device under test is not of the schottky type as, in fact, the metal contact is assumed to 
slightly change the Fermi level of the GNR, and the electron affinity is the same everywhere. 
In the present work we report the example of a two-port GNR of 12x208 atoms in a FET configuration. The latter is 
shown in Fig. 1, together with its dispersion curves. Note that the GNR is semiconducting with band gap of  about 0.6 
eV. The dispersion curves have been plotted only for positive energies since the negative ones show a symmetric 
dependence. The same holds for ka, that ranges only from 0 to 180 degrees because the negative angles shows a 
symmetric behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. a) GNR channel; b) dispersion curves of the simulated GNR channel, the jumps to zero are just numerical jumps 
from one curve to one other. 
 
In the present example, the Fermi level in the contacted GNR is assumed to be 360 meV. In Fig 1a we report the 
iterative convergence of the potential curve for a fixed Vgs=0.02V and Vds=0. The dependence of the potential curves 
on Vgs (and Vds=0) is shown in Fig .2b and refer to the last iterative step, when numerical convergence is obtained. 
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Fig. 2 a) Numerical convergence of the electrostatic potential along the GNR, Vgs=0.02 V, Vds=0; the dot lines 
represent intermediate steps of the iterative calculation, whereas the solid line is the final converging curve; b) 
dependence of the self-consistent local potential on the gate voltage Vgs. 
 
 
The applied iterative scheme requires a starting function for the potential, or for the charge, as close as possible to the 
final solution, in order to avoid numerical divergence. In fact, the main issue in simulating complex devices is given by 
the handling of the non-linear Poisson-Schrödinger system. There is never any “a priori” guarantee that the iterative 
approach will actually converge to a stable solution: this  is a rather common and well known limit cycle problem, 
occurring when a particular charge density (Qa) gives rise to a certain potential (Va) and, in the next numerical cycle, a 
different pair (Qb) and (Vb) is produced, so that charge and potential simply bounce back and forth from state (a) to state 
(b) states, never converging. Thus, a particular care is required when handling equations (1) and (2); in the above figure 
we have shown some successful simulation examples. 
 

 

3. Conclusion 
 

 In this contribution we report on numerical simulation of graphene-nanoribbon based transistors. In particular we 
characterize the use of a single layer GNR as channels for charge transport and evaluate, in a self-consistent charge-
potential framework, the dependence of local potential on an external applied voltage, with emphasis to the numerical 
features of the implemented iterative algorithm. 

 

 
 

a) 

b) 



4. References 
 
1. Z. Chen, Y.-M. Lin, M. J. Rooks and P. Avouris, “Low-dimensional Systems and Nanostructures” Physica E 

Volume 40, Issue 2, pages 228-232, Dec. 2007. 
2.  M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy Band-Gap Engineering of Graphene Nanoribbons” Phys. 

Rev. Lett. 98, 206805, 2007. 
3. X. Li, et al., “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors” Science 319, 1229, 2008. 
4. C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn, “Energy Gaps in Etched Graphene 
Nanoribbons”,  Phys. Rev. Lett. 102, 056403, 2009. 
5. X. Liu, J. B. Oostinga, A. F. Morpurgo, and L. M. K. Vandersypen, “Electrostatic confinement of electrons in 
graphene nanoribbons”,  Phys. Rev. B 80, 121407(R), 2009. 
6. K. Wakabayashi and M. Sigrist, “Zero-Conductance Resonances due to Flux States in Nanographite Ribbon 
Junctions”, Phys. Rev. Lett. 84, 3390–3393, 2000. 

7. S. Souma, M. Ogawa, T. Yamamoto and K. Watanabe, "Numerical Simulation of Electronic Transport in Zigzag-
edegd Graphene Nano-Ribbon Devices",  J. of Computational Electronics, vol. 7, n.3, 390-393, 2008. 
8. L. Brey and H. A. Fertig, Electronic States of Graphene Nanoribbons, cond-matt. 0603107, 5 Mar 2006. 
9.  Y.Ouyang, Y. Yoon; J. Guo, “Scaling Behaviors of Graphene Nanoribbon FETs: A Three-Dimensional Quantum 
Simulation Study” IEEE Transactions on Electron Devices, 54, Issue 9, 2223 – 2231, 2007 
10.  Z. F. Wang, R. Xiang, Q. W. Shi, J. Yang, X. Wang, J. G. Hou and J. Chen, “Modeling STM images in graphene 
using the effective-mass approximation”, Phys. Rev. B 74, 125417, 2006. 
11. T. Ando, “Quantum point contacts in magnetic fields”, Physical Review B 44, 8017, 1991. 
12. E. V. Castro, N. M. R. Peres and J. M. B. Lopes dos Santos, “Gaped graphene bilayer: disorder and magnetic field 
effects”, Phys. Stat. Sol. (b) 244, n. 7, 2311–2316, 2007. 
13. A. Rycerz, “Nonequilibrium valley polarization in graphene nanoconstrictions”, Phys. stat. sol. (a) 205, 1281-89 
2008. 
14.  A. R. Akhmerov and C. W. J. Beenakker, “Boundary conditions for Dirac fermions on a terminated honeycomb 
lattice”, Cond-mat.mes-hall, 0710.2723v1, 2008. 
 


