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Abstract 
 

Recent advances in space exploration have shown a great need for antennas with high resolution, high gain 
and low side lobe level (SLL). The last characteristic is of paramount importance especially for the Microwave 
Power Transmission (MPT) in order to achieve higher transmitting efficiency (TE) and higher beam collection 
efficiency (BCE). In order to achieve low side lobe levels, statistical methods play an important role. Various 
interesting properties of a large antenna arrays with randomly, uniformly and combined spacing of elements have 
been studied, especially the relationship between the required number of elements and their appropriate spacing 
from one viewpoint and the desired SLL, the aperture dimension, the beamwidth and TE from the other. We 
propose a new unified approach in searching for reducing SLL by exploiting the interaction of deterministic and 
stochastic workspaces of proposed algorithms. Our models indicate the side lobe levels in a large area around the 
main beam and strongly reduce SLL in the entire visible range. A new concept of designing a large antenna array 
system is proposed. Also, we have proposed a new technique to the beam-control in MPT using syclostationarity. 
Our theoretic study and simulation results clarify how to deal with the problems of side lobes in designing a large 
antenna array, which seems to be an important step toward the realization of future SPS/MPT systems. 
 

1. Introduction 
 
For the conventionally designed arrays where all elements are spaced uniformly, there exists an upper limit 

to the spacing if the grating lobes are not permitted to appear in the visible region. 
The deterministic non-uniformly spaced algorithms are numerically difficult to implement for large antenna 

arrays. 
The randomly spaced algorithms (the concept of “thin” arrays) are easier to implement, but need of further 

study in order to determine their merits and drawbacks. 
In this paper we develop further the existing algorithms [1-3] and our previous research [4-6], proposing a 

new techniques to deal with side lobes and grating lobes.  
 

2. Randomly and Uniformly Spaced Arrays 
 

Consider a linear array along the X axis in Cartesian coordinate system and suppose we are given N+1 
equally excited antenna elements by isotropic radiation to be placed at random within an aperture defined by 

2/aX ≤  in wavelength, in accordance with a common probability density function (pdf) .  ( )xf
Assume that the random positions {  are independent. Then for each sample vector{ },  

there is a sample radiation pattern function given by the magnitude of [2] 
}nX nX ,1+∈ N
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     θ - the observation angle measured from the normal to the array axis 
       α - the scan angle measured from the normal to the array axis 
      ( )αθπ sinsin −= au - the observation angle parameter 

       { }- normalized workspace aXx nn /2=
        = - the aperture, measured in wavelength.  a xNd

We can determine the array factor (AF) = ( ) 2uP or ( ) 2θP as a random function. In (1) if { }nX  is 

considered as positions of conventional uniform spacing { }xn ndX =  the model is automatically transformed in 
the deterministic one – see (2). 
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λ

)πψ sinsin2
−= . Normalized work space equals Nndx xn /2= . We can determine the array 

factor AF = ( ) 2θP as a periodic function [4]. 

The model (1) is pure stochastic model and will be coded as RA (random array). The model (2) is well known 
deterministic model of uniform spacing and will be coded as UA (uniform array). In [2] was found the distribution 
of maximum of SLL outside of the main beam region and that at any “u” the probability of antenna response being 
less than any level r is given by 
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Here δ  is the first positive zero of characteristic function and the bracket [ ]a4  is the integer part of . This is a 
chi-squared distribution with two degrees of freedom.       

a4

This expression gives the number of elements required to achieve the desired SLL (maximum, not average) 
with predetermined confident probability of success such as 0.9, 0.95, etc.  
 

3. Combined Stochastic Algorithm [4] 
 
Let’s consider the sample radiation pattern function given by the magnitude 
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The positions are a linear combination of deterministic one and random one. The AF ( ) 2θP consists of two parts: 

The first part is a periodic function and if 2/λ>xd  grating lobes can not be avoided. 

Unlike, periodicity of the second part is strongly destroyed from random positions of . It is equivalent of 
non-uniform spacing and there is no grating lobes, but on the price of relatively high SLL.  
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The basic role of the algorithm for optimization both side lobes and grating lobes play positions { }nX  of 

antenna elements. This set{ }, or its normalized version nX ,1+∈ N
n RX { }nx  creates the work space which plays 

a fundamental role. Generally {  ={ }}nx { }nrandn xx +det . In section 2, we have considered the models { } and 

 separately that were called RA and UA respectively.  
nrandx

{ detnx }
Let’s consider the model (5) over 

 
{ }nx = { } { }nrandnx ε+det .                  (6) 

 
It operates over two times larger workspace and { }nrandε ={ }nrandx /N is a small random perturbation of the 

deterministic workspace and N is the number of elements. It is non-uniform spacing stochastic algorithm, which 
suppresses grating lobes, but with respect to SLL it is almost the same as RA algorithm, even with two time larger 
aperture. This model will be called Combined Stochastic Algorithm (CSA) and will compete with existing UA and 
RA algorithms. Our algorithm is a non-uniform spacing stochastic algorithm, where random workspace is strongly 
reduced, and positions { /N play the role of very small random perturbations around the deterministic 

positions . This algorithm as we will see has any advantages with respect to both UA and RA algorithms.  

}nrandx
}{ detnx

 
4. Further Development of the Problem of Minimization of SLL [5] 

 

 
 

Fig.1 Radiation characteristics of the ICSA, N=16000 (data1), 
N=32000, (data2) and N=64000 (data3), λ2=avd  

 
Let’s rewrite Eqn. (6) as follows: 

 
 { = }nx 1c { } { }Nxcx nrandn /2det +                                     (7)  

 
The influence of these two constants and  over the behavior of the workspaces { and 

reveals an interesting properties of our algorithm, which was studied in previous section with 

and . We have found experimentally the following set of constants {

1c 2c }
}

detnx
{ nrandx

11 =c 12 =c 1.0,93.0 21 == cc } to 

improve minimization of SLL and no gratings lobes appear – see Fig. 1. Let’s call this model improved combined 

  



  
 

stochastic algorithm (ICSA). From now on into entire visible range will be used suitable amplitude excitation 
function which concerns the beamwidth and influence to transmitting efficiency.  

In the Table 1 are presented the features of the transmitting part of the system for MPT. η1D and η2D are  one 
dimensional and two dimensional transmitting efficiency of linear array. The diameter of transmitting antenna in 
[m] is indicated for different number of antenna elements.  

 
Table 1 Characteristics of the transmitting part of the system for MPT 

 

Number 
of PCM 

Number of 
Antenna 
Elements 

Number of 
elements in 
Sub-array 

Power 
[GW] 

 
Diameter[m]

TE  
dav=с1λ  
η1D     η2D 

1600 16000 10 1.02 769    0.9067   0.8221 
2134 32010 15 1.82 1538    0.8831   0.7799 
2560 64000 25 2.62 3076    0.8580   0.7362 

 
5. Conclusion 

1. The pure stochastic algorithms with average spacing more than λ (thinned arrays) really suppress grating 
lobes but on the price of sufficiently high SLL. So a large amount of elements need to decrease a little SLL.  

2. We propose a new combined stochastic algorithm. It is a new unified approach in searching for reducing 
SLL by exploiting the interaction of deterministic and stochastic workspaces. It is a non-uniform spacing stochastic 
algorithm. So we have succeeded to reduce SLL considerably with out grating lobes appear and achieve high TE. 
We have proposed a new technique to the beam-control in MPT using syclostationarity.  

3. Our study and simulation results clarify how to deal with the problems of side lobes and grating lobes in 
designing a large antenna array, which seems to be an important step toward the realization of future SPS/MPT 
systems. 
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