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Abstract

New families of hierarchical curl and divergence-conforming vector bases for the most commonly used two- and
three-dimensional cells are directly constructed from orthogonal scalar polynomials to enhance their linear indepen-
dence, which is a simpler process than an orthogonalization applied to the final vector functions. These functions span
the mixed-order (or reduced) spaces of Nédélec and can be used to deal with structures meshed by a mixture of cells
of different geometry.

1. Introduction

Hierarchical vector basis functions for surface or volumetric representations of electromagnetics fields became
increasingly popular in Computational Electromagnetics (CEM) applications since the early 1990s because they facil-
itate adaptive refinement procedures that do not require any re-meshing of the structures under study. A set of vector
basis functions is referred to as hierarchical if the vector basis functions forming the n-th-order set are a subset of
the vector basis functions forming the (n + 1)-th-order set. With these basis functions, the polynomial order of the
vector-field solutions can be arbitrarily selected (or adjusted) in different regions of the computational domain to be
higher in the regions where, for example, either the energy of the solution or the solution errors are expected (or found)
to be higher. In this connection we should mention that the polynomial order of the used vector basis functions can be
locally changed also while using interpolatory vector bases, although with a more complex procedure that results to be
unsuitable for adaptive p-refinement. In fact, in adaptive p-refinement, the polynomial order of the basis functions is
locally increased during an iterative solution process on the same given mesh. Conversely, the adaptation technique is
called h-adaption or h-refinement when performed automatically by refining the mesh in the regions where the desired
accuracy is not obtained. The main issue in h-refinement is that the refine mesh may contain undesirable features such
as ill-shaped elements, while the main user’s drawback is that h-refinement always requires a full mastering of the
mesher-code and database.

In contrast to interpolatory vector bases [1, 2], hierarchical bases often exhibit poor linear independence as the
order of the representation is increased, resulting in an ill-conditioned system of discretized equations which stands
out against the use of hierarchical basis functions of very high order, to the point to make h-adaptation unavoidable
in several applications. The loss of linear independence is often mitigated by resorting to some cumbersome (partial)
orthogonalization process that involves all the used basis vectors. In order to alleviate the loss of linear independence,
we have recently proposed new families of hierarchical vector bases for the most commonly used two- and three-
dimensional cells [3]-[7] that are directly constructed from orthogonal scalar polynomials, which is a simpler process
than an orthogonalization applied to the final vector functions [8]. We considered both curl and divergence-conforming
bases with continuous tangential or normal components, respectively, across adjacent elements. In practice, curl-
conforming basis functions are appropriate for discretizations of the vector Helmholtz operator, while divergence-
conforming functions are appropriate for the so-called electric field integral equation (EFIE) operator. In contrast
to scalar bases, conforming vector bases not only provide appropriate tangential or normal continuity at element
(material) interfaces, but also provide convenient means for imposing boundary conditions on unknown fields or
currents. They also avoid the spurious modes usually encountered when scalar representations are used with one of
the foregoing operator equations.

The existing basis functions can be classified into three groups [3]: A) those that span complete polynomial vector
spaces, B) those that span the mixed-order spaces of Nédélec [9] (sometimes known as reduced gradient spaces for
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Figure 1: Two and three-dimensional structures meshed by cells of different geometry. At left, the figure shows a
2D-structure meshed by a mixture of triangular and quadrilateral cells while, at right, the figure shows a 3D structure
meshed by a mixture of tetrahedral, brick and prismatic cells.

curl-conforming functions), and C) those with subsets that exactly span both types of spaces. Our new hierarchical ba-
sis sets belong to group B. Our functions incorporate scale factors that help optimize the resulting matrix conditioning,
as discussed in [10], [11].

Our hierarchical vector bases are obtained by a three-step process. For each element, we first define a complete
set of generating scalar polynomials orthogonal on the given parent element, and therefore hierarchical in nature.
These polynomials are then multiplied by the zeroth-order vector functions for the element under consideration to
obtain a set of vector functions that contains some functions linearly dependent on the others. Finally, by using a
procedure similar to that discussed in [1, 2] for the interpolatory case, any redundant basis function is eliminated from
the resulting vector set. After removing the redundant vector functions, the total number of the new hierarchical vector
basis functions is equal to the number of the equivalent interpolatory basis set given in [1, 2], and the space spanned
by the hierarchical and the interpolatory bases is exactly the same.

2. Hierarchical Curl-Conforming Bases

Our new hierarchical curl-conforming basis functions for triangular, quadrilateral, tetrahedral, brick and prism cells
are described in [3]-[6]. To guarantee tangential continuity across adjacent cells of different geometry (see Fig. 1), all
our curl-conforming vector basis functions are subdivided from the outset into three different groups of edge, face, and
volume-based functions and, in each group, all the generating polynomials are mutually orthogonal independent of the
definition domain of the inner product, i.e. either the volume, the face, or the edge of the cell at issue. Furthermore,
to the same purpose, our hierarchical edge and face-based generating polynomials are obtained to be either symmetric
or antisymmetric with respect to the parent variables that describe each edge and face of the cell. The tangential
continuity of the field across element boundaries is thus simply ensured by adjusting the vector basis function sign to
correspond to an arbitrarily selected reference direction along the adjacent elements (see [3]-[6]).

The relative performance of various hierarchical curl-conforming basis functions for triangular cells was evaluated
in [10] by discretizing the vector Helmholtz equation

∇ × ∇ × H = k2H (1)

to calculate the resonant frequencies of two-dimensional cavities bounded by perfectly conducting walls (a homoge-
neous Neumann boundary). When the magnetic field H =

∑
i αiBi is expressed in terms of vector basis functions

Bi the element matrices S and T have entries of the form

Smn =
∫∫

S

∇ × Bm · ∇ × Bn dS (2)

Tmn =
∫∫

S

Bm · Bn dS (3)

Because of the nullspace of the curl operator, the element matrix S is singular. However, T is nonsingular and its
condition number provides an indication of the relative linear independence of the different basis functions [10].



TABLE I: CONDITION NUMBER COMPARISON FOR TRIANGULAR BASES OF ORDER 2.5 AND 3.5

The matrix condition number of the global T-matrix in (3) obtained by taking the ratio of the largest singular value to the
smallest, for five triangular-cell meshes of different quality. The Graglia et al. bases are in their original form [3]; the
Ingleström bases are scaled using the optimal factors of [10].

Family Mesh 12 Mesh 42 Mesh 40a Mesh 40b Mesh 34

Graglia, Wilton, and Peterson (GWP) [1] of order 2.5 528 352 597 6,075 3,319

Graglia∗ et al. [3] of order 2.5 720 459 855 1,923 1,366

Ingleström [12] of order 2.5 1,040 510 1,085 5,022 3,284

GWP [1] of order 3.5 2,274 1,541 2,689 58,813 20,857

Graglia et al. [3] of order 3.5 2,298 1,502 3,160 6,449 5,093

Ingleström [12] of order 3.5 1,461 1,148 2,526 14,002 7,162

Number of cells: 12 42 40 40 34

Order of T for 2.5 order: 114 468 444 444 384

Order of T for 3.5 order: 240 792 752 752 648

Table I shows a comparison of the condition numbers of the global T-matrix obtained from five different triangular-
cell meshes for the functions of Nédélec order 2.5 and 3.5. (The mesh numbers indicate the number of cells.) Mesh
#40b and mesh #34 were deliberately designed to have cells with a large aspect ratio, resulting in a poor matrix
condition number. A singular value decomposition algorithm was used to find the largest and smallest singular values
of the global T-matrix, and the ratio of those two parameters is reported. In the Table, the interpolatory basis functions
of [1], with unit components, are used as a reference and the results obtained for our new hierarchical functions are
compared with those obtained by using the Ingleström functions [12] which, among all the other existing bases, are
those able to provide the lowest condition numbers if properly scaled as discussed in [10]. For most of the other
hierarchical families, the use of “optimal” scale factors substantially improves the resulting matrix condition numbers
whereas the condition numbers associated with our new family improved slightly by optimizing the scale factors, that
is our functions appear to be scaled in a fairly optimal manner already. Table II presents element matrix condition
numbers for vector bases of increasing order on square and cubic reference cells of unitary edge-length. Our proposed
hierarchical bases are compared to the interpolatory bases of [1]. The hierarchical condition numbers clearly grow at a
much slower rate as their order increases than those of the interpolatory set. Preliminary numerical results (not shown
here) were also reported for skewed quadrilateral-cell bases in [11]. These results showed that of the other existing
families, only the functions of [13] were comparable to the condition numbers of our new set; the other families
exhibited higher condition numbers. Preliminary results obtained by use of hierarchical curl-conforming vector bases
are reported in [6].

3. Hierarchical Divergence-Conforming Bases

Divergence-conforming functions on triangles or quadrilaterals are easily obtained by a 90 degree rotation of the
curl-conforming bases. New hierarchical divergence-conforming basis functions for the most commonly used three-
dimensional cells are described in [7]. To guarantee the element conformity when using cells of different geometry,
all our divergence-conforming vector basis functions are subdivided from the outset into two different groups of face
and volume-based functions and, in each group, all the generating polynomials are mutually orthogonal independent
of the definition domain of the inner product, i.e. either the volume or the face of the cell at issue. The normal
continuity of the field across element boundaries is simply ensured by adjusting the basis function sign to correspond
to an arbitrarily selected reference direction along the adjacent elements (see [7]).



TABLE II: INDIVIDUAL ELEMENT T-MATRIX CONDITION NUMBERS FOR SQUARE AND CUBIC CELLS

Basis order Order of T CNH CNI Order of T CNH CNI

0.5 4 3.000 3 12 9 9

1.5 12 22.956 20.639 54 526.998 141.988

2.5 24 22.956 109.720 144 526.998 1.02709× 103

3.5 40 60.483 486.676 300 3.65825× 103 6.88114× 103

4.5 60 60.483 2.5579× 103 540 3.65825× 103 6.04903× 104

5.5 84 114.658 1.60285× 104 882 1.31464× 104 7.08665× 105

Individual element T-matrix condition numbers for hierarchical (CNH) and interpolatory (CNI) [1] vector bases of different
order, obtained by considering a square (left-hand Table) and a cubic (right-hand Table) cell of unitary edge-length.

4. Conclusion

Above, the most important features of our new hierarchical vector bases which span the mixed-order spaces of
Nédélec have been considered. References [3]-[7] present the construction details of the curl-conforming bases; in
2D the divergence-conforming bases on triangular or quadrilateral cells can be obtained by a 90 degree rotation of
the curl-conforming bases. The presentation will include a detailed discussion of the construction technique used for
hierarchical divergence-conforming bases on volumetric cells.
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