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Abstract

We have investigated the situation where light incident from a passive high-refractive-index medium is totally
reflected off an infinite half space with gain. The question of whether or not evanescent gain can prevail
in this case, has been at issue for 40 years. We argue that the controversy can be resolved for week gain
media using the Laplace transform, combined with a detailed analysis of analytic and global properties of
the permittivity function of the active medium.

Paper

Light incident from a high-refractive-index medium onto a low-index medium, undergoes total internal
reflection provided the angle of incidence is larger than a certain critical angle. Total internal reflection is a
fundamental physical phenomenon with several famous applications; in particular modern telecommunica-
tions rely on optical fibers based on this phenomenon.

Since the tangential electric and magnetic fields must be continuous at the interface, there must be nonzero
fields in the low-index medium, even though the incident wave is totally reflected. For lossless/gainless media,
these evanescent fields decrease exponentially away from the interface. The presence of evanescent fields in the
low-index medium suggests that the reflected wave will sense any perturbation induced there. In particular,
if the low-index medium has gain, the reflection response will change compared to the lossless/gainless case.
The problem of determining the correct electromagnetic response in the case of an active low-index medium
is far from trivial, and has been discussed for 40 years without reaching consensus [1-4]. A key issue is
whether the reflectivity may exceed unity (i.e., evanescent gain exists) when the active medium fills the
entire half-space. Experiments have indicated that evanescent gain exists [5]. However, it has been argued
that the amplified reflection may be due to back reflection from e.g., the boundaries of the active medium
[4].

Since there are no gain media with infinite thickness, why do we choose to examine this case? Assuming
darkness for time t < 0, the solution to Maxwell’s equations for an infinite gain medium equals that of a
finite slab for times t less than d/c, where d is the slab thickness and c is the vacuum velocity of light. Hence,
understanding this situation, can help explain transient phenomenons, and it is clearly interesting from a
fundamental point of view.

The existing controversy is described in a paper recently submitted for publication [6]. A summary will
follow here. Assuming well defined frequency-domain fields, we solve Maxwell’s equations in the frequency-
domain, using the sign convention exp(−iωt). The transversal wavenumber (spatial frequency of the source)
kx is defined as illustrated in Fig. 1. We further let both media be nonmagnetic with permittivities ε1 and
ε2, where Re ε1 > Re ε2. For plane waves, Maxwell’s equations require the longitudinal wavenumbers in the
high-index and low-index media to be

k1z = ±
√
ε1ω2/c2 − k2

x, (1a)

k2z = ±
√
ε2ω2/c2 − k2

x. (1b)
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Figure 1: A wave is incident from a high-index medium onto a low index medium with gain. The source
produces a single, spatial frequency kx. The spatial frequency of the fields in the low-index medium must be
kx as well, to satisfy the electromagnetic boundary conditions. The longitudinal wavenumbers are denoted
k1z and k2z. Note that since the excitation is assumed to be causal, it contains an infinite frequency band.

At some observation frequency ω = ω1, we assume k2
x < Re ε1 ω

2
1/c

2 while k2
x > Re ε2 ω

2
1/c

2. Since the
high-index medium is passive, we may readily determine the correct sign of the square root in (1a). For the
low-index medium, we assume Im ε2 < 0 and | Im ε2| � 1 (i.e., small gain). The correct sign for the square
root in (1b) is far from obvious: Either Im k2z > 0 and Re k2z < 0, or Im k2z < 0 and Re k2z > 0. We will
show that the right choice depends on the analytic and global properties of the permittivity, ε2. In other
words, two media with the same permittivity at some frequency can behave differently, even in the limit of
(quasi-)monochromatic fields.

To determine the correct solution, we must be certain that we consider the real, physical situation. In
the time-domain, the electromagnetic fields are the real, physical fields. By requiring the fields to be zero
for t < 0 we obtain the causal solution to Maxwell’s equations. When there is gain in the system, using the
Fourier transform can be perilous, since the field may increase with time. Hence, within a linear medium
framework, Fourier transforms do not necessarily exist. Therefore, as in electronics and control engineering,
we generalize the analysis by using the Laplace transform,

E(ω) =

∫ ∞
0

E(t) exp(iωt)dt. (2)

In (2) a sufficiently large value of Imω will quench an exponential increase in the time-domain electric field
E(t), such that the integral converges. The inverse transform is given by

E(t) =
1

2π

∫ +∞+iγ

−∞+iγ

E(ω) exp(−iωt)dω. (3)

The integral is taken along the line ω = iγ, for a sufficiently large, real parameter γ, above all non-analytic
points of E(ω) in the complex ω-plane.

For simplicity, we further restrict ourselves to TE polarization. The Fresnel reflection coefficient ρ and
the transmission coefficient τ (including the propagation factor exp(ik2zz) become [7,8]

ρ =
k1z − k2z

k1z + k2z
, (4a)

τ =
2k1z

k1z + k2z
exp(ik2zz), (4b)
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Figure 2: The complex ω-plane. For conventional, weak gain media, there are branch cuts in the vicinity
of ω = ±kxc. These branch cuts can be chosen arbitrarily; however, the shown, vertical cuts minimize the
integral around the part of the branch cuts in the upper half-plane.

provided the sign of k2z is determined such that k2z → +ω/c as Imω →∞, and k2z is an analytic function
of ω. The reflected and transmitted frequency-domain fields are given by (4) multiplied by the Laplace
transform of the incident field. The associated, physical, time-domain fields are obtained by the inverse
transform (3). Now, by analytic continuation, we can reduce γ until we reach a non-analytic point of (4),
without altering E(t). If the expressions (4) are analytic in the entire, upper half-plane, we can set γ = 0 and
interpret ρ and τ for real frequencies. On the other hand, if there are non analytical points, the time-domain
fields diverge. In that case, real frequencies are not meaningful in general.

To find the actual reflection and transmission response, we first consider a conventional, weak, gain
medium, described by an inverted Lorentzian resonance:

ε2(ω) = 1− Fω2
0

ω2
0 − ω2 − iωΓ

. (5)

Here F , ω0, and Γ are positive parameters, describing the resonance strength, frequency, and bandwidth,
respectively. Solving the equation ε2ω

2/c2 = k2
x for F � 1 and Γ � ω0, we find 4 branch points of the

function k2z = k2z(ω). Two of them are located in the vicinity of the frequencies ω0, both with imaginary
parts −Γ/2. Since these are located in the lower half-plane, they do not lead to instabilities. The last two
branch points are located right above the real frequencies kxc and −kxc. For simplicity we assume that
kxc >

√
2ω0. Then they have imaginary parts less than FΓ. Thus, there are necessarily two branch cuts in

the upper half-plane. If we want to interpret frequency-domain fields at a real frequency ω, we want to use
the inverse Fourier transform instead of (3). However, from the above discussion, to obtain the right result
we must add the integrals around the branch cuts: By path deformation the original path from −∞ + iγ
to +∞ + iγ is the same as the path from −∞ to ∞ plus the paths around the branch cuts in the upper
half-plane, see Fig. 2. Due to the exponential factor exp(−iωt), the integrals around the branch cuts diverge
and dominate after some time.

If the excitation frequency ω1 is sufficiently far away from the branch points, the instability associated
with the branch cut at kxc is excited very weakly, and can be neglected up to a certain time. This instability
can in practice be interpreted as an unbound wave traveling at the surface, with wave vector k2z = 0, growing
exponentially with time. The condition that the excitation frequency is away from kxc is quite natural; it
means that the incident angle is not close to the critical angle.

To examine the time-domain behavior in detail, it is useful to evaluate (3) analytically for the excitation
u(t) exp(ikxx− iω1t), with Laplace transform exp(ikxx)/(iω1 − iω) [9]. The reflected field at z = 0 is given
by

Eρ(x, t) =
1

2π

∫ +∞+iγ

−∞+iγ

k1z − k2z

k1z + k2z

exp(ikxx− iωt)
iω1 − iω

dω, (6)

The integral (6) can be evaluated by a generalized version of the residue theorem, in which we find the
contour integral around all poles and branch cuts of the integrand in half-plane Imω < γ. Simplifying by
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Figure 3: The function k2
2z(ω) for a typical gain medium, plotted in the complex k2

2z-plane. To identify k2z,
we require it to be +ω/c at ω = ∞, continuous as ω decreases towards zero, except at the branch cut at
ω = kxc where it changes sign.

assuming x = 0, F � 1, Γ� ω0, kxc >
√

2ω0, and kxc− ω1 �
√
FΓ, we can show that

Eρ(0, t) =
k1z − k2z

k1z + k2z
exp(−iω1t) + Ebc(0, t), (7)

where the integral contribution around the branch cuts can be bounded

|Ebc(0, t)| ≤ Γ3/2

(kxc− ω1)
√
kxc(ε1 − 1)

(
eFΓt − e−Γt/2

)
(8)

for t & 2/Γ. In other words, for 2/Γ . t . 1/FΓ, we can ignore the branch cuts contribution such that the
reflected field is well described by the first term in (7).

We can now answer the question about existence of evanescent gain. To obtain (7), we have only
considered two branch cuts in the upper half-plane; these are the necessary branch cuts due to the zeros
of ε2ω

2/c2 − k2
x. Therefore, we must ensure that the integrand in (6) is analytic elsewhere in the upper

half-plane. That is, the sign of k2z must be determined such that k2z is analytic everywhere away from
the two mentioned branch cuts, in the upper half-plane. Since k2z → +ω/c as ω → ∞, we conclude that
Im k2z > 0 at the observation frequency ω1, see Fig. 3. For the conventional gain medium (5) we conclude
that, provided the “reflected” field from the side wave can be ignored, evanescent gain is possible.

More sophisticated gain media can be constructed, at least in principle, that behave differently compared
to the conventional weak gain media. In fact, the longitudinal wavenumber can be tailored to have a nega-
tive imaginary part at an observation frequency ω1 < kxc [6]. Thus both solutions (k2z in the second and
fourth quadrant of the complex plane) are possible. In other words, whether or not evanescent gain prevails,
depends on the detailed permittivity function. It cannot be determined from the electromagnetic parameters
at a single frequency, but must be identified from the entire frequency domain dependence.
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