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Abstract 
 
In this paper, we apply some well known results derived from the theory of homogenization for the Maxwel’s 
equations to obtain the effective permittivity of periodical and non periodical arrangements for spherical particles. 
The analysis is restricted to lossless and non magnetic media at Long Wave Approach –LWA. Random arrangement 
of particles is modelled as a “super crystal” with a “big” unit cell where the statistical parameters of the whole 
distribution are preserved. That allows us to make an unified treatement for periodic and random distributions, from 
diluted to opaline structures  

 
1. Introduction 
 
Many natural geophysical media could be modelled as discrete heterogeneous random distributions of 
different scatters [1,2]. Also, the new materials known as Photonic Band Gap (PBG) materials – more 
appropriately called Electromagnetic Band Gap (EBG) materials- are composed by periodic distributions 
of single scatters embedded  into a continuous background medium [3]. Understanding how e.m. waves 
and fields interact with such kinds of media will supply information about the composition and spatial 
distribution of the scatters in the system. This is very relevant for applications in remote sensing, non 
destructive analysis and tailoring the e.m. properties of artificial EBG materials. The starting point in the 
research on  EGB materials is that the propagating e.m. waves in a periodic dielectric lattice may present 
a set of forbidden frequency bands, depending on the dielectric contrast, the size and the spacing of the 
components. But usually this is not the case for LWA: at low frequency, the dispersion relation. )(k

r
ω  is  

a continuous function, and from its derivative the effective permittivity of the system (for non-magnetic 
media) can be obtained for every frequency . In the following, we present briefly some basic results of the 
behaviour of e.m. waves propagating in a periodic structure and the asymptotic behaviour for LWA. The 
results would be valid for random macroscopically homogeneous media, provided that the wavelength is 
higher than the characteristic length of homogeneity. In this case, the system can be simulated as a 
periodic arrangement of an elementary unit cell, inside which the statistical parameters of the whole 
system are preserved. In order to simplify the calculations, we only consider spherical inclusions 
 
2. LWA for the effective permittivity in a periodic dielectric structure 
 
In a transparent, lossless, non magnetic and source free medium, a monochromatic wave satisfies  
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for the magnetic field ωH
r

. Here,  ω is the angular frequency, c is the velocity of light in the vacuum, and 
0)( =∇ rH

rr
ω .  

 

For a periodic medium, the inverse of the permittivity could be expanded as a Fourier series: 
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where  
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Ω is the unit cell of the distribution (with volume VΩ) and K
r

and 'K
r

are generic vectors of the reciprocal 
lattice. 

Developing the field ωH
r

  into Bloch  modes: 
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In this expression, the unit vectors iu
r

form an orthonormal triad with the unit vector along the direction of 
propagation of the mode Kk

rr
+ , k

r
 lying in the first Brillouin zone, and ih  are the projections of ωH

r
on 

)( Kkui
rrr

+  (i=1,2). By introducing the equations(2-3) into the equation.(1), tedious, but simple algebra 
leads to [4,5] 
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This equation gives a way to obtain the dispersion relationship )(k
r

ω  for the allowed modes, and from 
which, it is able to obtain the group velocity of the wave by differentiation. This eigenvalue problem will 
give an exact solution only when is solved all the possible (infinite!) K

r
 values, and extending the sum to 

the infinite 'K
r

vectors. In the limit of Long Wave Approach (LWA), by considering the inverse problem 
of the equation (4), it is obtained [6] 











=











+
+

Ψ
+

−∑
)(
)(

)'(
'(

' 2

1
2

22

2

11
','

2

kg
kgkc

Kkg
Kkg

Kkk
k

Kk
K

r

r

rr

rr

rr rr
r ω

    (5)  

where  the operator 1
',

−Ψ Kk
rr  is the inverse of  
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 Now, taking the limits 0→ω and 0→k
r

 in equation (5), the only non vanishing term in the left hand 
side correspondsto 0'=K

r
. Also effkkc εω =→0

222 )/( , so finally 
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The resulting effective permittivity is a (2x2)-matrix, and so, for each wave direction there are generally 
two possible values for the wave velocity eff

g
eff cv ε/=  

It must be noticed that the effective permittivity resulting from this process tends to the scalar wave result 
if the limits are taken before the inversion of the matrixΨ , loosing all the structural influences over the 
homogenized permittivity. All these influences are introduced by the whole set of values for 'KK

rr
−ε . In 

general, the Fourier transforms of the permittivity distribution on the unit cell are 
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adding over all the “i” scatters lying in the cell, and where a
if is  the “atomic” factor of the “i” scatter, 

containing the size and shape information, and g
if is the geometric factor of the distribution. For 

spherical scatters centred at ir
r

 with radius Ri 
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Figure 1. Convergence test for the effective 
permittivity of SC spheres (ε=10) into air. 
Fractional concentration of spheres p=0.4 

Figure 2. Effective permittivity of sphere 
cubic distributions (SCC, BCC, FCC) with 
ε=10 into air 

 
 

3. Numerical results. 
 

We calculate the effective permittivity for different arrangements of spherical particles embedded into a 
continuous matrix. The selected configurations are cubic lattices with different number n of identical 
scatters arranged as SCC (n=1), BCC (n=2), FCC (n=4), and randomly distributed (n=5, 10 and 15). 
Calculations where performed using a standard Matlab™ package. 
Inversion of the matrix Ψ was carried out by taking the N reciprocal K

r
vectors with the smaller norms. 

(N=number of planar waves to superpose in the equation (5)). 
Figure 1 is a test of convergence for the obtained effective permittivity for a SC lattice. The scatter 
permittivity is εi=10 ,  placed into air εm=1: The volume fraction of the inclusion is p=0.4. Results were 
obtained for N=73, 93, 113 and 133 . The plot of εeff versus N-1/3 is almost linear, and we obtain the 
extrapolated value as N→∞ by least-squares adjust. Figure 2 shows the achieved results for the spherical 
scatters  into air, arranged as BCC, FCC and SCC for different fractional compositions (below the 
minimum percolation threshold). In figure 3 we plot the evolution of the effective permittivity for five, 
ten and fifteen identical spheres with permittivity ε=10 randomly distributed into air. The random 
distributions were generated using a Random Sequential Adsorption algorithm [6].. Figure [4] shows an 
illustration of an achieved result for ten closed pack spheres. In figure 3, the broken line corresponds to 
the theoretical result achieved from the Quasi Crystalline approach with Coherent Potential and Percus-
Yevick pair distribution (QC-CP-PY)- see reference [1]. This result matches perfectly with the simulated 
results for the fifteen spheres (circles). Deviation of the simulations with respect to the QC-CP-PY 
expected values increases as the number of scatters decreases. The asterisks and the points correspond to 
the simulations for ten and five spheres respectively.   
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Fig. 3. Evolution of the εeff for fifteen (o), ten (*) and 

seven (·) dielectric spheres (ε=10) into air. The 
broken line corresponds to the expected values from 

QP-CP-PY approach. 

Fig. 4. An illustration of the ten closed pack 
spheres randomly distributed 
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5. Comments 
 
An exact solution for equation (6) can be achieved only by taking the whole set of the reciprocal vectors. 
Convergence will not be achieved unless a high enough number of planar waves is considered into matrix 
Ψ. We carried out our calculations up to 133 contributions, although it required considerable computation 
time (from 20 s for N=73 to 4500 s for N=133 for every single calculation). 
Our calculations were performed in Matlab™, using its standard libraries and commands. So our code is 
far from being optimized, and most of the computation time is devoted to inverting the matrix (equation 
(5b)). Careful analysis of the symmetries for every lattice would help selecting a more accurate algorithm 
for matrix inversion, thus minimising the computing time. The proposed method is “exact” for the 
calculation of the effective permittivity of periodic composites. For random homogeneous composites, the 
method would work properly as long as the wavelength is higher than the scale of homogeneity of the 
system. In this case, the composite could be modelled as a single cubic arrangement of a big point group.  
We limit our treatment to spherical inclusions, in order to avoid the calculation of the “atomic” and 
“geometric” form factors (equation (7)), by using their analytic expressions. The generalization of the 
presented results, excluding some other simple scatter shapes, would require the use of some of the 
available Fast Fourier Transform algorithms in order to calculate these parameters. The computing time 
would be increased in this case. 
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