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INTRODUCTION 

For structures such as feed guides of RF equipment, optical waveguides or TEM /GTEM chambers, it is 
necessary to numerically simulate their behaviour at different frequencies and thus determine the optimal functioning 
dimensions to reduce manufacture and test costs. It is very important to have a simulation technique that will yield 
fast and accurate results.  
Our approach presents a new way of using tensorial formalism. Up until now, this formalism was always developed 
by considering only the covariant components E and H [1]. However, in this paper, the selection of the couple (E, B) 
for the study of the electromagnetic behaviour of the structure is justified. In the first section, the tensorial formalism 
is exposed and the concept of covariance and contravariance is defined. In the second part, the formulation 
commonly used to solve electromagnetic problem with the covariant method and the new contravariant method are 
introduced. In Section 3, these two methods are applied to the propagation analysis in a trapezoidal waveguide.  

1. TENSORIAL FORMALISM 

1.1. Definitions 

A natural coordinate system, either orthogonal or not, to a surface S is such that one of the coordinates surfaces 
coincide with this surface S. In such system, the referential origin is defined by the intersection of the coordinates 
curves xi = constant (for i=1…N). Let us consider a surface S separating two media and let a

�
be a vector. If one calls 

X1 the coordinates curve x1=constant and X2 for x2=constant, then the covariant components ai (i=1, 2) are tangent 
on the coordinates surfaces Xj (j=2,1) and the contravariant components are perpendicular to coordinates surfaces Xi 
(i=1,2) (Fig.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Vector representation by these covariant and contravariant components. 

1.2. Tensor Form For Maxwell Equation  

In the present work, Maxwell's equations are used in a non orthogonal curvilinear coordinates. To achieve this, it is 
necessary to use tensorial calculus [2]. Among the various electromagnetism equations formulation available, the 
Maxwell-Minkowski-Post formalism has been chosen since it is invariant to a change of referential [3]. Their 
expressions and those of the constitutive relations are (1): 
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where i, j, k { }321∈ , Ek and Hk are, respectively, the covariant component of the electric field and the covariant 
component of the magnetic field. Bi and Di are respectively the contravariant component of the magnetic induction 
and the electric flux density. ξijk is the Levi-Civita indicator, whose only nonzero elements are 

11 321213132312231123 −=ξ=ξ=ξ=ξ=ξ=ξ  

For a homogeneous, isotropic and linear medium of permittivity ε  and permeability µ , the medium pseudo-
tensors ijet  µε ij  which are twice contravariants are written: 

)det( ijijijijij gggggg =µ=µε=ε  

where µ=µ0  and ε=ε0 (the vacuum permeability and permittivity, respectively) and gij are the metric tensor 
components. Pseudo-tensors contain geometrical and physical information of the problem. 
The boundary condition across the interface S (Fig.1) are written as a1(1) = a1(2) (the tangential component are 
continuous) and a1(1) = a1(2) (the normal component are continuous). In fact, the boundary conditions can be written 
on the interface between two media, such as on a plane, as soon as this interface coincides with a coordinates surface. 
For instance, the continuity of the tangential component of the electric field and the magnetic field on the surface X2 
is expressed by the continuity of the covariant component Ei and the contravariant component Bi with i ≠ 2. 

2. COVARIANT AND CONTRAVARIANT METHOD 

From the Maxwell-Minkowski equations and constitutive relations (1), and considering the load densities and current 
equal to zero in the medium, two formulations can be used, the covariant and the contravariant methods. The time 
dependence is assumed by the factor exp(iωt), where ω is the angular frequency, c and k are, respectively, the 
celerity and the wave number. 

2.1. Covariant Method 

Since the medium is considered linear, homogeneous and isotropic, many authors choose only one of the two electric 
and magnetic quantities, namely the covariant component of E and H, to study the electromagnetic behaviour of a 
waveguide or a grating [4]. The propagation equations of the electric field, for example, result from the systems (2) 
in Table 1. They are then written, for an index i=1 (the 2 other equations are obtained by circular shift) as given by 
(3) in Table 1. 

2.2. Contravariant Method 

Table 1: Analytical formulation of the covariant and contravariant methods. 
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with associated differential operator corresponding to the 
transverse Laplacian in curvilinear coordinates  
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In a free-source medium, Maxwell’s equations may be written as (4). Hence, the problem is restricted to a 
geometrically invariance along the z direction (i=3).  
Longitudinal electromagnetic wave propagation is characterized by a propagation constant γ with γi−=∂3 . The 
propagation’s equations can be expressed as in (5).  

3. APPLICATION  

3.1. Geometry 

These two methods have been applied to the propagation analysis in a waveguide with a constant trapezoidal section 
along the plan (xOy) (fig.2). To write the boundary conditions in a simple way, coordinates system such that the 
boundary surface coincides with a coordinates surface (u, v, w) is defined from the Cartesian system (x, y, z) (6).  
 
 
 
 
 
 
  
 
 

 

Fig.2: Trapezoidal waveguide. 

where xaxf )tan()( α+=  is a function describing the higher profile, xxg )'tan()( α−=  the lower profile of the 
waveguide and g(x)-f(x)h(x) = .  
The metric tensor g (7) is determined with a referential change which is associated to the geometry problem. Let M 
denotes a variable point referenced by the rectangular coordinates (xi with i = 1, 2 or 3). At M, the so called natural 
referential (M, ei’ with i’ = 1, 2 or 3) is defined by the following basis vector (8): 
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The longitudinal components of the electromagnetic field are expressed in terms of the transversal ones from (2) and 
(4). The covariant and the contravariant field components are developed on a Fourier expansion basis. The 
propagation equations resolution (3) and (5) is made using the moment’s method by projecting equations onto a 
Fourier basis. The solutions of this eigenvalues problem are the propagation constants and the longitudinal fields’ 
amplitudes. 

3.2. Covariant Method 

One of the validation criteria retained, except the usual physical and energy criteria, is to compare our results with 
those of rectangular and triangular waveguides. The rectangular waveguide section dimensions are a/λ=0.47 and 
b/�λ=0.97. In this waveguide, the only propagation mode is the fundamental one. The propagation constant value of 
the fundamental mode (theoretical value) is compared with the covariant theory.  
The results obtained (fig.3) show us that the proposed formulation is not adequate for this particular problem. In fact, 
the formulation with the covariant component of E and H was largely exploited these last years [5]. But this one 
involves sometimes incoherencies in the results obtained. For a waveguide (the reasoning could be then applied to 
other propagating or diffracting structures), the metric tensor is not a scalar such as it has been conceived for a 
homogeneous, isotropic and linear medium in a Cartesian referential. Indeed, in this study, the permittivity and the 
permeability are expressed in a non-diagonal matrix form. The approximation usually made to consider only the field 
H with the boundary conditions of the field B is not valid any more. In a non-orthogonal curvilinear referential, a 
study meeting all the generally accepted standards requires that the couple (E, B) is considered. Their boundary 
conditions are simple to express. On the contrary, the boundary conditions for D and H cannot be easily written and 
considering that, the system is not orthogonal and the relations between E and D, and B and H are not linearly 
proportional.  
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Fig.3: Variation of the imaginary part of the propagation constant 
for the fundamental mode according to the truncation order for λ=1m. 

3.3. Contravariant Method 

To validate this method, a trapezoidal waveguide (fig.2) with dimensions a/λ=0.47, b/λ=0.97 for α = α’=2° is 
considered. The convergence of the pure imaginary constants values for a small truncation order (N=6) can be noted 
(fig.4). Another study is made for the transformation of a square guide (dimensions a/λ=0.97 and b/λ=0.97) to an 
isosceles right-angled triangular guide of size similar to the square one (fig.5). The only propagating mode found in 
this final structure is the mode TE01. The resulting code was validated considering results convergence according to 
the truncation order and compared with those yields by a commercial software with due regards to physical and 
numerical criteria.  

4. CONCLUSION 

Two methods using tensorial formalism have been compared to study propagation in non canonical waveguide. The 
usual method using covariant component is not adequate since the metric tensor is not a scalar in a non orthogonal 
curvilinear coordinates system and the boundary conditions of H are not easily expressed. The use of (E,B) is the 
only way to simulate correctly the propagation in a waveguide or the diffraction on a grating. The contravariant 
method can be used to analyse any structure with arbitrary shape. 
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Fig.4: Propagation constant convergence according             Fig.5: Variation of the propagation constant according 

to truncation order.            to the deformation angle from a square to a triangle. 


