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ABSTRACT

A new application for corrugated rectangular waveguides as left-handed meta-material transmission lines is presented.
Dielectric filled corrugations serve as a series capacitive surface that overcomes the natural series inductance of the
waveguide. Operating the waveguide below the cutoff of the dominant mode turns the shunt capacitance into shunt
inductance, and thus within the frequency range where the corrugations offer capacitive impedance, backward waves
are sustained. The full-wave solution for the structure is found using the method of moments incorporating Floquet’s
theorem, where the dispersion characteristics and the modal field distribution are determined. An equivalent circuit
model for the waveguide was constructed and subsequently used to predict the propagation constant with a very
good accuracy as compared to the full-wave solution. Results are compared to those obtained using a finite-element
commercial software (HFSS) and exhibited very good agreement.

INTRODUCTION

With the variety of applications of meta-material transmission lines [1], such as compact microwave devices, novel
radiating elements, miniaturized resonators, and others, different realizations were proposed for such structures using
microstrip lines [2], finlines [3], and waveguides [4]–[6].

In this work, another realization for meta-material guided-wave structures is proposed using rectangular waveguides
with dielectric-filled corrugations and operated below the cutoff of the waveguide dominant mode. The corrugated
surface acts as a series capacitive surface which, in the presence of the inherent shunt inductance of the evanescent
TE dominant mode, creates the suitable environment for backward waves to propagate. This is in contrast to their
traditional use with corrugated horn antennas where they act as high-impedance surface to support hybrid modes.

The corrugated waveguide is analyzed using two approaches: the first approach is based on the rigorous full-wave
solution using Galerkin’s projection technique upon applying Floquet’s theorem to reduce the spatially periodic problem
to its spectral analog, where a discrete spectrum of modes with corresponding propagation constants is determined.
The second approach involves the development of an equivalent circuit model for the unit cell, then applying the
Bloch-Floquet theorem to determine the propagation constant in the periodically cascaded cells. The results obtained
from both approaches are compared against those obtained using the FEM-based commercial software, Ansoft High
Frequency Structure Simulator (HFSS) [7], and exhibit very good agreement.

SPECTRAL ANALYSIS

Invoking the equivalence principle, the corrugated waveguide problem shown in Fig. 1(a) may be solved by first short
circuiting the corrugations and introducing unknown equivalent magnetic currents on waveguide/corrugation interface.
The fields scattered by the magnetic currents are then determined using the pertinent dyadic Green’s function for the
waveguide and the corrugations. The use of Floquet’s theorem reduces the problem of the spatially periodic magnetic
currents to a spectral problem with the unknown current being only that of one reference corrugation. Enforcing the
continuity of the tangential electric and magnetic fields on the interface of the reference corrugation yields an integral
equation that can be cast in the operator form

LM = 0 (1)

whereM is the unknown magnetic current on the reference corrugation andL ≡ L(kz0) is an operator-function of a
spectral parameterkz0 and, in general, is a function of the geometrical and material parameters of the structure.



Using entire domain basis functions, Galerkin’s projection technique may be applied to reduce (1) to the matrix form

YV = 0 (2)

where Y = Yw − Yc is the difference between the waveguide and corrugation matrices andV is the unknown
coefficients vector of the magnetic current. The propagation constantkz0 is determined as a solution of the dispersion
equationdet[Y(kz0)] = 0. The vectorV is computed as the null space vector ofY, from which the modal magnetic
and electric fields may be obtained.

In the general case, where the corrugation lengthl is less than the waveguide widtha, the expressions for the matrix
elements and the field components are rather lengthy, and are thus not given here for brevity. In the special case of
wall-to-wall corrugations, however, more compact expressions are obtained. Considering only one mode for the current
expansion and one spatial harmonic results in the simple dispersion relation:
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The dominant TEx01 mode has the following field components
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whereE0 is the amplitude of the corrugation aperture electric field and the impedanceZ01 is defined by
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EQUIVALENT CIRCUIT MODEL

Viewing the corrugation as a short-circuited waveguide section, the equivalent circuit model of the unit cell can be
obtained as shown in Fig. 1(b), where the parallel LC combination models the corrugation aperture and the transformer
models the transition to the corrugation waveguide. The circuit parameters are obtained independent of the load (in
this case the corrugation as a shorted waveguide) as outlined in [8]. The effective per-unit length parameters of the
corrugated waveguide may be obtained using

C ′
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andZ0 = 2η(b/a). It is clear from (7) thatC ′
eff is negative below the cutoff frequency of the dominant TE10 mode of

the non-corrugated waveguide, i.e. forf < fc = c/2a. Within some frequency rangef1 < f < f2, Leff changes its
sign when the capacitance offered by the corrugation exceedsL′. If these two frequency ranges overlap, then left-hand



(LH) propagation will be sustained. The conventional right-hand (RH) propagation will occur whenL′
eff and C ′

eff

are positive.

Applying the Bloch-Floquet theorem, the propagation constant may be found as
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where fRH = max{fc, f2} and fLH = min{fc, f2}. In (9) the first and second branches correspond to RH and
LH propagation, respectively, and the third branch corresponds to evanescence occurring when the per-unit-length
parameters have opposite signs.

RESULTS

To act as a capacitive immittance surface, the corrugations should have a depthλd/4 < d < λd/2, whereλd is the
corrugation waveguide wavelength. Fig. 2 depicts the dispersion diagram for a case where the corrugated waveguide
has the following parameters:a = 17 mm, b = 6.46 mm, l = 17 mm, w = 1.27 mm, d = 3.7 mm, andp = 1.5
mm. The waveguide is air-filled, whereas the corrugations haveεrd = 10.2. Four bands are distinguished in the figure
for the dominant TEx01 mode: a RH pass-band above the cutoff frequencyfc of the TEz

10 mode of the non-corrugated
waveguide, a LH pass-band in the frequency rangef1 < f < f2, two stop-bands in the rangesf2 < f < fc andf < f1

where the waves are evanescent. The curve in Fig. 2 was obtained by finding the zeroes of the complex function
f(kz0) = det[Y(kz0)] using the secant method. The comparison with HFSS [7] exhibits an excellent agreement.

The waveguide characteristic impedanceZ01 of the dominant mode is real and positive in the LH and RH propagation
bands, and assumes a positive imaginary values (inductive) elsewhere, as shown in Fig. 2. This can be easily seen from
(6) in the different frequency ranges: Above the cutoff frequencyfc of the RH propagation,kz0 is positive and real
whereasγ2

10 is negative real, yielding a positive real value forZ01. In the rangef1 < f < f2, kz0 and γ2
10 are also

real but with negative and positive signs, respectively, yielding a positive real value forZ01. In the other frequency
ranges,f2 < f < fc and f < f1, γ2

10 is positive and real, andkz0 is pure imaginary and negative number, and thus
Z01 is inductive.

Fig. 2 also compares the values of the propagation constant and the characteristic impedance estimated using the
equivalent circuit model to those obtained using the present theory. It can be seen that the circuit analysis succeeds in
predicting the dispersion behavior of the structure with very good accuracy, except in the range wherekz0 assumes
relatively high values. This is expected since the validity of the circuit model was based on the assumption that the
period is much less than the guided wavelength; a condition that is violated for high values ofkz0.

CONCLUSION

A composite right/left-handed waveguide was realized by loading its wall with dielectric-filled corrugations. The
dispersion characteristics were determined using a full-wave modal approach as well as an approximate circuit analysis,
and exhibited very good agreement. In addition, the results were verified using a commercial software.

The effect of the different design parameters on the left-hand propagation bandwidth was studied, and more in-depth
understanding of the higher order modes of the structure was sought. For the analysis of finite sections of the corrugated
waveguide integrated with other microwave components such as conventional waveguides, the constructed equivalent
circuit for the unit cell was cascaded to model the corrugated waveguide section.
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Fig. 1. Rectangular waveguide with dielectric-filled corrugations: (a) original geometry and (b) equivalent circuit model of a unit cell.

7 7.5 8 8.5 9 9.5 10
−2

−1.5

−1

−0.5

0

0.5

1

Frequency (GHz)

k z0
/k

f
c

f
2

f
1

7 7.5 8 8.5 9 9.5 10
0

200

400

600

800

1000

1200

1400

Frequency (GHz)

Z
01

 (
Ω

)

f
c

f
2

f
1

Fig. 2. Dispersion characteristics and characteristic impedance of the dominant TEx
01 mode. Lines: present theory (solid: real part and dashed:

imaginary part), dots: HFSS, pluses: circuit model (L = 6.788 nH, C = 47.711 fF, andT = 1.0).


