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Abstract

We are in the process of performing an effective wide-band analysis for characterizing the electrodynamic behavior of phased
array antennas, infinite periodic structures, frequency selective surfaces and related applications, with emphasis on gaining physical
insight into the phenomenology of short-pulse radiation. The present contribution shows the current status of our network-oriented
dyadic TD GF for a planar array of sequentially excited dipoles that constitutes a prototype study of sequentially short-pulsed
radiation by infinite periodic arrays. In order to mitigate the dispersive effect of the TD-Floquet waves we will also consider
alternative eigenvector formulations for the transverse field within a periodic cell of the array that yield a more favorably-computable
TD-Transmission Line -Green’s function.

I. Introduction

Wide-band radiation by periodic arrays of sequentially pulse-excited antennas, or pulse-induced radiation

by passive scatterers, suggests parameterization in terms of wave constituents in the time domain (TD), which
is better matched to the relevant phenomenologies than its frequency domain (FD) counterpart. The purpose of
this paper is to lay the foundation for TD field representations and their physical interpretations. In particular,
we aim at a TD network formulation that may lead to efficient representations of the vector electromagnetic
field radiated by phased arrays. We have previously investigated canonical TD dipole-excited Green’s functions
(GF) for infinite [1] and truncated [2] periodic line arrays, and for infinite [3] and semi-infinite [4] periodic planar
arrays. The radiated field there has been expressed and parameterized in terms of TD Floquet waves (FW).
The resulting scalar TD GF has already been used advantageously to construct a fast TD method of moments
algorithm for wide-band analysis of infinite periodic structures [5]. The current status of a network-oriented
dyadic TD GF is presented here for a planar array of sequentially excited dipoles that constitutes a prototype
study of sequentially short-pulsed radiation by infinite periodic arrays.
A principal feature of the network-oriented approach is that £ (TM) and H (TE)-type TD-FW modes can
be separated and treated individually. The field is expressed in terms of TD transmission line (TL) Green’s
functions that obey standard network theory. Therefore, possible infinite planar vertically inhomogeneous media
may readily be incorporated into the formalism. Interesting causality issues accompany such E and H mode
decompositions: it is found that individually, each E and H mode is noncausal, and that it can be expressed
in closed form in terms of a convolution between characteristic noncausal functions and the causal TL GFs.
Causality on the total TD-FW vector mode field is recovered by summing the E and H mode contributions. In
order to parameterize the TD-FW behavior, we begin with the solution in the FD, with subsequent inversion
to the TD. Asymptotic inversion from the FD yields the instantaneous frequencies which parameterize the
constituent TD-FWs. The localization of the synthesizing wide-band frequency spectrum around instantaneous
frequencies is due to the periodicity-induced dispersive FW behavior. The formal aspects of the analysis follow
the traditional lines in [6], to which we refer frequently. Thus, the transverse p, gth vector FW mode fields are
expressed in terms of transverse FW-mode scalar eigenfunctions. The longitudinal fields are described by voltage
and current TL GFs, Z,, and Tplq; in the TD, these TL-GFs can be evaluated in terms of Bessel functions and
incomplete Lipschitz-Hankel integrals [7]. Numerical examples of radiation from infinite planar arrays of dipoles
with short-pulse band-limited excitation demonstrate the accuracy of the TD-FW algorithm, and illustrate the
rapid convergence of the (TD-FW)-based field representation since only a few terms are required for describing
the off-surface field radiated by the planar array. Results for the nonphased case have already been used in a
combined (TD-FW)-FDTD algorithm, shown in [8], for the analysis of periodic arrays of complex scatterers.

II. Statement of the Problem

We consider the generic infinite periodic array geometry shown in Fig.la, with periodicities d, and d, along
the = and y directions, respectively; the corresponding TD transmission line (TL) representations for the
FW-based modal fields and Green’s functions are schematized in Figs.1b and 1lc, respectively. Concerning
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Fig. 1. Generic planar periodic array geometry of elementary radiators, and TD-TL schematizations of the FW-based modal
fields and Green’s functions. (a) Array geometry. dg, dy: interelement spacing along z and y, respectively; nw/c = kn: phase

gradient of the excitation (i.e., the wavefront) along the direction lu(see B); v <p) = ¢/n: phase speed along 1,. (b) Equivalent
TD transmission line for pgth FW with modal voltage Vp, and current Ipq, exmted by modal voltage and current sources vpq and
ipg.- (¢) TD transmission line voltage and current Green’s functions Z(z,2’,t) and T (z,2',t) excited by a unit current generator
at z = z/.

notation, a caret ~ tags time-dependent quantities; bold face symbols define vector quantities; 1,, 1, and 1,

denote unit vectors along x, y, and z, respectively; the observation point is denoted by r = p + 21,, with
= mlw—&—yl The FW based modal FD and TD fields due to the array are related by the Fourier transform
pair f(r,w) = [~ f(r,t)evtde, f(r,t) = = [0 f(r,w)e’*'dw, in which f can be either a scalar or a vector

quantity. These Fourler -transform-related fields satisfy the respective FD and TD periodicity conditions

E(r +d,w) = E(r,w)e @/0wd) B4 dt) = Blr,t - (1, - d)/d (1)

where d = d,1, +dy1,, k = w/c denotes the ambient wavenumber and ¢ denotes the ambient wavespeed. In
the FD, the composite linear phasing on the array is along the direction 1,, perpendicular to 1, = 1,x1,
(see Fig.1a), with projected phasings wn,/c and wn,/c along the x and y directions, respectively. In the TD,
this translates into intercell excitation delayed by n(1,, - d)/c. The important nondimensional single parameter

n=y/n2+n2= c/v(p) which is tied to the rotated coordinate system defined by u (see Fig.1), combines both

(p)

phasings 7, and 7y, and vy~ = ¢/n is the impressed phase speed along u. The TD cutoff condition n = 1

(g, P — = ¢) separates two distinct wave dynamics. Here, we treat the case n < 1 which implies excitation phase

(p)

speeds vy~ = ¢/n (and corresponding projected phase speeds ¢/n, and ¢/1n,) larger than the ambient wavespeed

C.

III. Time-Domain Modal Representation of the FW-based Fields and Their Sources: TD Modal
Transmission Line Fields and Green’s Functions

The TD-TL representations are here obtained by Fourier-transforming their FD counterparts such as E;(r,w) =
> p.q Voa(2,w)epg(p,w), where Vpq (2, w) is the associated TL voltage, and eq(p,w) is the transverse eigenvector.
Thus the transverse (to z) TD field is expressed in terms of a time-dependent complete orthogonal eigenvector
set comprising both E (TM) and H (TE) mode functions &,,(p,t) and hy,(p, t),

E(r,t) = Z qu(zat) ® €pq(p; t), I:It(r7t) = ijq(zﬂt) ® flpq(pv t), (2)

where ® denotes time convolution and the summation extends over both £ and H modes. As in the FD case,
excitations by TD modal sources J te( t) and My (r, t) are likewise represented in terms of this eigenbasis, with

amplitudes given by the strengths i,, and 0, of current and voltage generators: Jte(r t) = Zp q %pq(z,t) ®
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Fig. 2. Hz(r, t) component of the magnetic field radiated by an infinite sequentially pulsed planar array of y-directed dipoles with
n = 0.7, observed at r = (x,y,2) = (0,0,10d;) as a function of time ¢. Parameters: d; = dy = 0.1m; Aps = 2d;. The TD-FW
expansion consists of all FWs with |p|, |¢| < 2, and agrees well with the element-by-element reference solution.

&pq(p,t), My(r,t) = > pq Upa(2:1) ® h,,(p,t). The eigenfunctions used in the FD are transformed into the TD
with a proper normalization, leading to the closed form

N B e_japq'p Q , . o, .
alpt) == {21,8'(7) + b (7)} r=t—ylL, p/e, (3)

together with ég](m t) = éfq(p, t) X 1,, where apg = ag ply +ay 41y, and oy p, = 27p/dy, 0y g = 27q/d,. Thus,
the eigenfunctions are pulsed FW-modulated slant-stacked plane wavefronts. The magnetic mode functions are
given by flpq =1, x &,,. Expression (3) is particularly convenient since the Dirac delta functions reduce the
convolutions in (2) to closed-form sampling of the voltages and currents (and their derivatives) at the retarded
time 7 =t —nl, - p/c (see [1], [3] for a physical interpretation in terms of a moving coordinate system). Other
normalizations, in particular the standard orthonormal choice which has a factor k; p, in the denominator of
(3), do not simplify the convolution and therefore require numerical techniques for evaluation.
For both EF and H modes, the TD-TL voltages qu(z,t) in (2) are obtained by superposing contributions
from appropriate point voltage and current generators distributed along z': qu z,t) = — [d2 T Viz, 2/, t) ®
tpg(2/,1) = [[d2' Zpg(2, 2/, 1) @ ipg(2',1). Solutions for the TD-TL Green’s functions qu(z, Z',t) and Tp‘fz(z, 2't),
excited by delta function current and voltage generators at 2z’ (see Figs.1b,c), are found via Fourier inversion
from the FD solutions in [6, pp.207], which can be evaluated in closed forms in terms of Hankel functions and
Incomplete Lipschitz-Hankel Integrals (see [7], and [9],[10],[11] for use of Incomplete Lipschitz-Hankel Integrals
). The TD modal voltage and current generator strengths 0, (t) and i,,(t) are found as before by projecting
the total equivalent electric and magnetic TD currents onto each FW mode: 0,4(2,t) =< M. (r, t); é}:q (p,t) >4,
%pq(z, 1) =< jte(r, t); e qu(p, t) >, in which the subscript ; denotes time convolution in the inner product. The
eigenfunction é;q(p,t) is defined as the Fourier transform of k. pq( )epq(p,w) which can also be evaluated in
simple closed form.

For the particular but interesting case of an array of sequentially pulsed dipoles, all oriented along J;,
it may be convenient to group the transverse eigenvector together with the current generator. This procedure
leads to (as an example) the electric field

eI (P—P)

. E.H
Efq (r,r',t) =Dg" (t)- I d,d,

t,pq ® Z;E;H(z?z”/vT) (4)
. E R

which is usefully expressed in terms of the noncausal dyad D (t) = dpg(t)1u1u+bpg (1) (11 +1,1,)+Epe(8) 1,1,

where a,q(t) = 6(t) — épq(t), bpg(t) = jsgn(t) épq(t), and ép(t) is a short pulse TD noncausal function that is

time-spread around ¢t = 0. However, as demonstrated in [7], causality is recovered by summing the E and H

constituents.



IV. Illustrative Examples

To check the accuracy of the TD-FW-based network formalism for the pulse-excited planar phased array of
dipoles, we have implemented the magnetic field solution analogous to (4), convolved with a BL excitation. The
solution is compared here with a reference solution obtained via element-by-element summation over the pulsed

radiations from all dipoles, i.e., H(r,t) = > = —oo P'(t — tmn)/(4TR2,, ¢) +15(t—tmn)/(47rR§nn)} (J: x
Rown), with Ry, = v — (v + pon), tn = 11y - Popn/C + Rimn/c, and m,n = 0,+1,£2, ... The mn-series
has been truncated when contributions from far-away elements are negligible, i.e., retaining elements with
|m|,|n| < 80. The selected BL excitation is a normalized Rayleigh pulse P(t) = Re[j/(j + wamt/4)®] (i-e.,
ﬁ(O) = 1) [12], with FD spectrum P(w) = 7(6ws) " (jdw/war)*exp(—4|w|/war) and central radian frequency
wpr, which corresponds to a central wavelength Ay = 2wc/wys. We present here only the magnetic field results
because the electric field evaluation would require the more involved TL-GF in ZA;”;(Z, z', 7). Consider an array of
dipoles oriented along 1,,, with periods d, = d, = 0.1m. The exciting waveform is chosen such that Ay, = 2d,,
so that the the average length of the pulse is twice the period of the array (see [3] for more details). Results for
a phased case (n = 0.7 along the direction 1,, = 1,,) are displayed in Fig.2. The magnetic field H, is observed
at the location (x,y,z) = (0,0,10d,;), versus time ¢. It is remarkable that TD-FWs with ounly |p|, |¢| < 2 are
adequate to represent the TD radiated field at any time ¢ in the plotted time interval. The agreement with
the element-by-element reference solution is excellent (as a further check on the numerics, both the TD-FW
expansion and the element-by-element reference solution yield a negligible I:Iy component). The total magnetic
field is obtained by numerically summing its £ and H-mode constituents; for the phased case n = 0.7, it is seen
that this sum cancels the small noncausal components, and renders the total signal causal.

V. Conclusions

A Network-Oriented Dyadic Green’s function has here been investigated for a planar infinite periodic
array of sequentially BL-pulse-excited dipoles. Via the network-oriented approach, the F (TM) and H (TE)
mode contributions can be separated and treated individually in a systematic fashion. The thus reduced modal
field is expressed in terms of transmission line (TL) Green’s functions that behave according to standard network
theory. Therefore, possible infinite planar transversely homogeneous layers with longitudinal inhomegeneities
can be readily incorporated within the formalism. It has been found that individually, each TD-FW E and H
mode is noncausal and can be obtained in closed form in terms of a convolution between characteristic noncausal
dyadic functions and the causal TL Green’s function. Causality of the total mode field is recovered in the E
and H mode sum. The total radiated field can be constructed at any location and at any time within our
numerical experiments by retaining only a few TD-FWs. It should also be noted that ”physically observable”
pgth TD-FWs are synthesized by (+p, +q), (—p, —q) superposition.
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