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ABSTRACT

We consider electromagnetic fields excited by spatially bounded, arbitrary given sources in the presence of a uniform
gyrotropic cylinder surrounded by an infinitely extended homogeneous gyrotropic medium. The axis of symmetry of the
considered cylindrical structure is assumed to coincide with the gyrotropic axis. The total field is sought in terms of the
vector modal solutions of source-free Maxwell’s equations. We determine the content of the modal spectrum and obtain
an eigenfunction expansion of the source-excited field in terms of discrete- and continuous-spectrum modes. We also
discuss the case of sources in an unbounded homogeneous gyrotropic medium.

INTRODUCTION

Electromagnetic fields excited by sources in anisotropic media are usually sought using Green’s dyadics or Fourier trans-
forms. In the case of gyrotropic anisotropic media described by the permittivity and/or permeability tensors with nonzero
off-diagonal elements, neither of these approaches has substantial advantages over each other, since the dyadic Green’s
functions in such media cannot be expressed in closed forms and are represented in terms of Fourier-type integrals. More-
over, in resonant gyrotropic anisotropic media in which the refractive index surfaces may have unbounded branches, the
Green’s functions are singular not only at the source point but also on the surfaces of the so-called resonance cones.
Because of these difficulties, an alternative approach based on using eigenfunction expansions of source-excited fields
turns out to be more suitable for field evaluations in the aforementioned media. Although this approach was proposed for
isotropic and anisotropic media long ago (see [1, 2] and references therein), eigenfunction expansions are rarely used for
analysis of fields excited by arbitrary sources in unbounded gyrotropic media, which is apparently explained by difficul-
ties of constructing the desired eigenfunctions in closed from. Recent studies of source-excited fields on open magnetized
(gyrotropic) plasma waveguides [3] have shown that the systematic use of eigenfunction expansions provides a convenient
and easily calculated method of finding the total field of a given source located in a gyrotropic medium.

In this paper, we present a rigorous and concise formulation of the complete eigenfunction expansion of the source-
excited field on a uniform cylindrical guiding structure immersed in a gyrotropic anisotropic background medium. The
limiting transition to the case of sources located in an unbounded homogeneous gyrotropic anisotropic medium will also
be discussed.

FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Consider time-harmonic (∼ exp(iωt)) given electric and magnetic currents with densitiesje(ρ, φ, z) andjm(ρ, φ, z),
respectively, in a medium described by the permittivity tensorε = ε0(ε1ρ̂0ρ̂0 + iε2ρ̂0φ̂0− iε2φ̂0ρ̂0 +ε1φ̂0φ̂0 +ε3ẑ0ẑ0)
and the permeability tensorµ = µ0(µ1ρ̂0ρ̂0 + iµ2ρ̂0φ̂0 − iµ2φ̂0ρ̂0 + µ1φ̂0φ̂0 + µ3ẑ0ẑ0), whereρ, φ, andz are
cylindrical coordinates andε0 andµ0 are the electric and magnetic constants, respectively. Such tensors are typical of a
general gyrotropic anisotropic medium with the gyrotropic axis parallel to thez axis. Let the elements of the tensorsε
andµ vary with ρ in such a way that they undergo a jump atρ = a and are constant forρ < a andρ > a, wherea is
the radius of the cylindrical guiding structure considered. In what follows we denote the elements of the tensorsε and
µ in an inner region (ρ < a) and in an outer medium (ρ > a) by ε̃1,2,3, µ̃1,2,3 andε1,2,3, µ1,2,3, respectively. We will
consider only the case whereε−1

1 ε2 + µ−1
1 µ2 6= 0. A peculiar caseε−1

1 ε2 = −µ−1
1 µ2 when the medium has the property

of uniaxial anisotropy needs separate consideration and will not be discussed here.
Solutions of source-free Maxwell’s equations in such a cylindrically stratified medium can be sought in terms of the



vector functions [
Em,s,α(r, q)
Hm,s,α(r, q)

]
=
[
Em,s,α(ρ, q)
Hm,s,α(ρ, q)

]
exp[−imφ− ik0ps,α(q)z], (1)

wherek0 is the wave number in free space,q is the normalized (tok0) transverse wave number in the outer medium,m
is the azimuthal index (m = 0,±1,±2, . . .), the functionsps,α(q) describe the dependence ofp, the axial wave number
normalized tok0, on the transverse wave numberq for the “ordinary” (α = o) and “extraordinary” (α = x) normal
waves of the outer medium, the subscripts denotes the wave propagation direction (s = − ands = + denote waves
propagating in the negative and positive directions of thez axis, respectively), andEm,s,α(ρ, q) andHm,s,α(ρ, q) are
the vector functions describing the radial distribution of the field of an eigenwave corresponding to the transverse wave
numberq and the indicesm, s, andα. The functionsps,α(q) obey the relationp+,α(q) ≡ pα(q) = −p−,α(q), where

pα(q) = 2−1/2
[
τeκ

2
e + τmκ2

m + τ2
g κ2 − (τe + τm)q2 + χαRp(q)

]1/2
, χo = −χx = −1,

Rp(q) =
{
(τe − τm)2q4 − 2

[
(τe + τm)(τeκ

2
e + τmκ2

m + τ2
g κ2)− 2τeτm(κ2

e + κ2
m)
]
q2

+(τeκ
2
e + τmκ2

m + τ2
g κ2)2 − 4τeτmκ2

eκ
2
m

}1/2
. (2)

Here,

τe =
ε1

ε3
, τm =

µ1

µ3
, τg =

ε2

ε1
+

µ2

µ1
, κe =

(
ε3

µ2
1 − µ2

2

µ1

)1/2

, κm =
(

µ3
ε2
1 − ε2

2

ε1

)1/2

, κ = (ε1µ1)
1/2 (3)

(see [4]). It is assumed thatRe Rp(q) > 0 andIm pα(q) < 0. To find the eigenvaluesq, it is required that the functions
Em,s,α(ρ, q) and Hm,s,α(ρ, q) obtained as a result of solution of Maxwell’s equations be regular on thez axis and
satisfy both the boundary conditions, which consist in the continuity of the componentsEφ;m,s,α(ρ, q), Ez;m,s,α(ρ, q),
Hφ;m,s,α(ρ, q), andHz;m,s,α(ρ, q) atρ = a, and the following boundedness conditions atρ →∞ [3]:

ρ1/2 |Em,s,α(ρ, q)| < R(1)
m,α, ρ1/2 |Hm,s,α(ρ, q)| < R(2)

m,α, (4)

whereR
(1)
m,α and R

(2)
m,α are certain constants. It can be shown that the total field yielded by summing (integrating)

eigenwaves over the found values ofq satisfies the radiation condition at infinity (r = (ρ2 + z2)1/2 →∞).
The transverse components of the vector functionsEm,s,α(ρ, q) andHm,s,α(ρ, q) are readily expressed in terms of

their axial componentsEz;m,s,α(ρ, q) andHz;m,s,α(ρ, q). In the outer homogeneous medium (ρ > a), these components
are written as follows:

Ez;m,s,α(ρ, q) =
i

ε3

[ 2∑
k=1

C(k)
m,s,α(q)n(1)

s,αqH(k)
m (k0qρ) + Cm,s,α(q)n(2)

s,αqαH(2)
m (k0qαρ)

]
,

Hz;m,s,α(ρ, q) = − 1
Z0µ3

[ 2∑
k=1

C(k)
m,s,α(q)qH(k)

m (k0qρ) + Cm,s,α(q)qαH(2)
m (k0qαρ)

]
. (5)

Here,C(1)
m,s,α, C

(2)
m,s,α, andCm,s,α are coefficients to be determined,H

(1)
m andH

(2)
m are Hankel functions of the first and

second kinds, respectively, of orderm, andZ0 is the impedance of free space. Other quantities in (5) are given by the
formulas

n(1,2)
s,α (q) =

[(
q(1,2)
α

)2 + µ−1
1 µ3 p2

α(q) + ε−1
1 (ε2

2 − ε2
1)µ3

] [
µ3τgps,α(q)

]−1

,

q(1)
α = q, q(2)

α = qα(q) =
[
κ2

m − τ−1
m p2

α(q)− ε3τgps,α(q)
(
n(1)

s,α(q)
)−1
]1/2

. (6)

In the above expressions, we putIm qα(q) < 0. Because of such a choice of the branches ofqα(q), we rejected the solution
comprisingH

(1)
m (k0qαρ) to ensure that the functionsEm,s,α(ρ, q) andHm,s,α(ρ, q) do not contradict the boundedness

conditions (4).
In the uniform inner region (ρ < a), the axial field components can be written as

Ez;m,s,α(ρ, q) =
i

ε̃3

2∑
k=1

B(k)
m,s,α(q) ñ(k)

s,α q̃(k)
α Jm(k0q̃

(k)
α ρ),



Hz;m,s,α(ρ, q) = − 1
Z0µ̃3

2∑
k=1

B(k)
m,s,α(q) q̃(k)

α Jm(k0q̃
(k)
α ρ). (7)

Here,Jm are Bessel functions of the first kind of orderm, B
(1)
m,s,α andB

(2)
m,s,α are coefficients to be determined, andq̃

(1)
α

andq̃
(2)
α are the transverse wave numbers in the inner region, which correspond to the axial wave numberpα(q):

q̃(1,2)
α (q) = 2−1/2

[
κ̃2

e + κ̃2
m −

(
τ̃−1
e + τ̃−1

m

)
p2

α(q)− χ(1,2)Rq

(
pα(q)

)]1/2

, χ(1) = −χ(2) = 1,

Rq(p)=

{(
1
τ̃e
− 1

τ̃m

)2

p4−2
[(

1
τ̃e

+
1
τ̃m

)
(κ̃2

e+κ̃2
m)−2

(
κ̃2

e

τ̃m
+

κ̃2
m

τ̃e
+ε̃3µ̃3τ̃

2
g

)]
p2+

(
κ̃2

e−κ̃2
m

)2}1/2

. (8)

The quantities̃τe, τ̃m, τ̃g, κ̃e, κ̃m, andñ
(1,2)
s,α are obtained from the formulas forτe, τm, τg, κe, κm, andn

(1,2)
s,α in (3) and (6)

if we replaceε1,2,3, µ1,2,3, andq
(1,2)
α by ε̃1,2,3, µ̃1,2,3, andq̃

(1,2)
α , respectively.

Calculating the transverse components of the field and satisfying the continuity conditions for tangential field compo-
nents on the boundaryρ = a, we arrive at the system of linear equations for unknown coefficientsB

(1,2)
m,s,α, C

(1,2)
m,s,α, and

Cm,s,α. This system can thus be represented in matrix form:

S ·G = C(1)
m,s,αF , (9)

where the components of the column vectorG are given by the expressionsG1,2 = B
(1,2)
m,s,α, G3 = C

(2)
m,s,α, andG4 =

Cm,s,α. The elements of the matrixS and the components of the column vectorF , which are not written here, are
expressible in terms of cylindrical functions involved in the expressions for tangential fields atρ = a.

The coefficientsB(1,2)
m,s,α, C

(1,2)
m,s,α, andCm,s,α are determined up to a factor independent of spatial coordinates. It is

convenient to putC(1)
m,s,α = det|S|. Then the other coefficients are easily calculated. Their expressions turn out to be very

cumbersome and are not presented here for brevity.

FIELD EXPANSIONS IN TERMS OF DISCRETE- AND CONTINUOUS-SPECTRUM MODES

The obtained field representation allows us to find the spectrum of eigenvaluesq and the corresponding eigenfunctions
of the guiding structure. First, it is easy to verify that the field (5) satisfies the boundedness conditions (4) for all real
transverse wave numbersq. Next, based on the approach developed in [3], it can be shown thatEm,s,α(ρ, q exp(±iπ)) =
Em,s,α(ρ, q) andHm,s,α(ρ, q exp(±iπ)) = Hm,s,α(ρ, q), whence it follows that the negative values ofq can be excluded
from the analysis. Thus, all positive values ofq constitute the continuous eigenvalue spectrum.

Along with the continuous spectrum of the values ofq, conditions (4) can also be satisfied for certain discrete complex
valuesq = qm,n (n = 1, 2, . . .) which are roots of the equationC(1)

m,s,α(qm,n) = 0 for Im qm,n < 0 or the equation

C
(2)
m,s,α(qm,n) = 0 for Im qm,n > 0. With allowance for the properties of Hankel functions, it can easily be verified that

roots of the latter equation do not yield new solutions for the field and can therefore be rejected. It is evident that the
waves corresponding to the discrete valuesqm,n are localized eigenmodes (discrete-spectrum modes) of the considered
guiding structure. The eigenmode fields are obtained by puttingq = qm,n in (1) and will further be denoted asEm,ns(r)
andHm,ns

(r), where the indicesn+ = n > 0 andn− = −n < 0 mark discrete-spectrum modes propagating in the
positive and negative directions of thez axis, respectively.

Since the set of discrete- and continuous-spectrum modes is complete, the total field outside the source region can be
expanded in the form[

E(r)
H(r)

]
=

∞∑
m=−∞

(∑
ns

am,ns

[
Em,ns

(r)
Hm,ns(r)

]
+
∑

α=o,x

∫ ∞
0

am,s,α(q)
[
Em,s,α(r, q)
Hm,s,α(r, q)

]
dq

)
, (10)

wheream,ns
andam,s,α are the expansion coefficients of the discrete- and continuous-spectrum modes, respectively.

In (10), one should putns = n > 0 ands = + for positivez andns = −n ands = − for negativez outside the source
region. The field expansion inside the source region is not given here for the sake of brevity.

The discrete- and continuous-spectrum modes entering expansion (10) satisfy some general conditions under which
orthogonality relations for these modes can be established. In the considered case, the orthogonality relations have a form
similar to that obtained in [3] for channels in a gyroelectric background medium. Using the orthogonality relations and



the well-known method developed for finding the expansion coefficients of modes of closed and open waveguides and
based on Lorentz’s theorem (see, e.g., [3]), we obtain the formulas

am,±n =
1

Nm,n

∫ [
je(r) ·E(T)

−m,∓n(r)− jm(r) ·H(T)
−m,∓n(r)

]
dr, (11)

am,±,α(q) =
1

Nm,α(q)

∫ [
je(r) ·E(T)

−m,∓,α(r, q)− jm(r) ·H(T)
−m,∓,α(r, q)

]
dr. (12)

Here, integration is performed over the region occupied by currents, the superscript(T) denotes fields taken in an aux-
iliary (“transposed”) medium described by the transposed tensorsεT andµT, and the normalization quantities for the
corresponding modes are given by the formulas

Nm,n = 2π
∫ ∞

0

[
Em,n(r)×H

(T)
−m,−n(r)−E

(T)
−m,−n(r)×Hm,n(r)

]
· ẑ0 ρ dρ, (13)

Nm,α(q) = − 16π

Z0k2
0

(
dpα(q)

dq

)−1 [
µ−1

3 + ε−1
3

(
n(1)

s,α

)2]
C(1)

m,s,α(q)C(2)
m,s,α(q). (14)

If the medium is homogeneous in the entire space, i.e., for0 < ρ < ∞, then the eigenvalue spectrum comprises only
the continuous part constituted by positive real transverse wave numbersq. The fields of the corresponding eigenmodes
and their normsNm,α(q) are yielded by puttingC(1,2)

m,s,α = 1 andCm,s,α = 0 in (5) and (14). In this case, the expansion
for the source-excited field is obtained from (10) by retaining only the continuous-spectrum modes whose expansion co-
efficients are given by previous formula (12).

CONCLUSIONS

In this paper, we presented the complete eigenfunction expansion of the total electromagnetic field excited by spa-
tially bounded given sources in a cylindrically stratified gyrotropic medium. The field has been expanded in terms of
modes whose spectrum comprises both the discrete and continuous parts, and the expansion coefficients of discrete- and
continuous-spectrum modes have been calculated. Our analysis generalizes the theory of excitation of open waveguides
in an infinitely extended gyroelectric medium [3] to the case of open guiding structures located in a general gyrotropic
anisotropic medium. Although the problem of excitation of guiding structures in such media can be solved using the
dyadic Green’s functions (see, e.g., [5]), the approach developed herein makes it possible to immediately obtain the
source-excited field without preliminary calculation of the dyadic Green’s functions.
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