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INTRODUCTION

During the past few years we have developed a systematic methodology for determining the propagation con-
stants of traveling waves on periodic arrays of electrically (or acoustically) small radiators and scatterers. The
methodology, which is founded upon a spherical-wave source scattering-matrix description of the array elements,
employs general reciprocity and power conservation relations to greatly reduce the number of unknowns in the
scattering matrices. For array elements that radiate and scatter electric and magnetic dipoles only, Poisson
summation formulas and Floquet mode analyses combine to produce readily solvable transcendental equations
for the propagation constants versus frequency (k–β diagrams) of the traveling waves on one-, two-, and three-
dimensional periodic arrays. This paper outlines the steps in the methodology and shows the k–β diagrams
that result from its application to periodic arrays of penetrable spheres.

ELECTRIC DIPOLE ANTENNAS

For an electrically small, lossless, z-directed electric-dipole antenna, the spherical-wave source scattering-matrix
equations for linear, single-port, time-harmonic (e−iωt) antennas reduces to [1]

b0 = Γa0 + RE0
z , b = Ta0 + SE0

z (1)

where a0 and b0 are the amplitudes of the ingoing and outgoing propagating mode, respectively, in the feed line
of the dipole antenna, b is the coefficient of the dipole field radiated and scattered by the dipole antenna (in the
far field, E = −b[eikr/(kr)] sin θθ̂, (r, θ, φ) being the usual spherical coordinates and k = ω/c with c the speed
of light), E0

z is the z component of the electric field incident upon the phase center of the electric dipole, and
the reflection, receiving, transmitting, and scattering coefficients of the dipole antenna are denoted by Γ, R,
T , and S, respectively. Writing T as |T |eiψT , reciprocity and power conservation show that the transmitting,
receiving, and scattering coefficients can be expressed merely in terms of the reflection coefficient Γ = |Γ|eiψΓ

and the phase ψT of the transmitting coefficient; specifically
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in which Y0 is the admittance of free space and η0 is the characteristic admittance of the dipole antenna’s feed
line. With the passive lossless dipole antennas terminated in a lossless load with reflection coefficient given by
ΓL = eiψL , b is given by

b = SeE
0
z (3)

where Se = |Se|eiψe = TR/(e−iψL − Γ) + S satisfies the relationship |Se| = (3/2) sinψe.
For an infinite 1D periodic array of electric dipoles perpendicular to the array axis, separated by a distance

d, and terminated in a lossless load, the following transcendental equation for the propagation constants β of
the traveling waves supported by this array results from equating the field incident on any one dipole to the
sum of the fields scattered by all the other dipoles [1]
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(kd)2 ln [2(cos kd− cosβd)] + (kd) [F (kd+ βd) − F (βd− kd)]

+ [G(kd+ βd) +G(βd − kd)]
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sinψe = 0, kd < βd. (4)

In deriving (4), we have used the summation formulas
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and the approximations
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≡ F (a) ≈ −0.1381 sina+ 0.03212 sin2a− 0.9653a ln(a/π), 0 < a < π (6a)

with F (a) = −F (2π − a) for π ≤ a < 2π and
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≡ G(a) ≈ 1.3328− 0.1424 cosa+ 0.01094 cos2a+ 0.4902a2 ln(a/π) − 0.2417a2, 0 < a < π (6b)

with G(a) = G(2π − a) for π ≤ a < 2π. The equation (4) gives an implicit expression for the normalized prop-
agation constants βd of the traveling waves supported by the 1D periodic array of lossless, passive, electrically
small dipoles perpendicular to the array axis as a function of the normalized spacing kd and the phase ψe of
the effective scattering coefficient. Although a closed-form expression cannot be found for βd as a function of
kd and ψe as was possible for a 1D periodic array of lossless, passive, acoustically small isotropic radiators [2],
the implicit expression (4) can readily be solved numerically for βd given kd and ψe.

For an infinite 1D periodic array of electric dipoles parallel to the array axis, separated by a distance d, and
terminated in a lossless load, a transcendental equation for β can similarly be found as [1], [3]

−2
3
(kd)3 cosψe + {kd [F (kd+ βd) − F (βd− kd)] + [G(kd+ βd) +G(βd − kd)]} sinψe = 0, kd < βd. (7)

Figure 1 shows the kd–βd diagrams obtained by numerically solving (4) (transverse excitation) and (7) (lon-
gitudinal excitation) for an array of electrically small gold nanospheres (with radius a equal to 1/3 the separation
distance d) that behave approximately as a lossless plasma with relative dielectric constant obeying the Drude
model at optical frequencies [4], [5]. The scattering coefficient Se for the nanospheres equals −i(3/2)bsc1 , where
bsc1 is the electric-dipole Mie scattering coefficient [6]. Since our theory is restricted to unattenuated waves, only
curves in the slow-wave region (βd > kd) are shown in Figure 1. (It can be proven [2] that unattenuated fast
waves (βd < kd) are not supported by 1D periodic arrays of electrically small scatterers.) Note that the curve
for transverse excitation is asymptotic to the βd = kd (light-cone) line, while the curve for longitudinal excita-
tion intersects the βd = kd line. The localization of the curves to the region of kd between approximately 0.88
and 1.01 corresponds to the region close to the first resonance of the Mie electric-dipole scattering coefficient at
ka = 0.313. (The magnitude of the Mie magnetic-dipole coefficient and all other multipole coefficients are negli-
gible at these frequencies compared to the magnitude of the Mie electric-dipole coefficient.) The corresponding
curves obtained by Park and Stroud [5] from a static field approximation are shown in red in Figure 1.

COUPLED ELECTRIC AND MAGNETIC DIPOLES

For orthogonal electric and magnetic dipole scattering with the electric dipole moment in the x direction and
the magnetic dipole moment in the y direction, the spherical-wave source scattering-matrix along with the
reciprocity and power conservation relations lead to [7]

be = SeE
0
x , bm = SmH

0
y/Y0 (8)

with scattering coefficients Se = |Se|eiψe and Sm = |Sm|eiψm obeying |Se| = (3/2) sinψe and |Sm| = (3/2) sinψm,
where be and bm are the coefficients of the scattered electric and magnetic dipole fields and E0

x and H0
y are the

x and y components of the electric and magnetic fields incident upon the phase center of the electric-magnetic
dipole scatterer. (In the far field, E = −be[eikr/(kr)] sin θeθ̂e and H = −bmY0[eikr/(kr)] sin θmθ̂m, where θe
and θm are measured from the positive electric and magnetic dipole moment axes, respectively.) The analysis
is restricted to scatterers that are sufficiently small that only electric- and magnetic-dipole scattered fields are
significant or to frequencies for which all the scattered multipole fields are negligible except the electric- and
magnetic-dipole fields.

For an infinite 1D periodic array of these orthogonal electric and magnetic dipoles perpendicular to the array
axis and separated by a distance d, the following transcendental equation for the propagation constants β of the



traveling waves supported by this array results from equating the electric and magnetic fields incident on any
one electric-magnetic dipole scatterer to the sum of the electric and magnetic fields scattered by all the other
electric-magnetic dipoles [7]
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and it can be shown that the left- and right-hand sides of (9) are real.
Figure 2 shows the lowest branch of the kd–βd diagram computed from (11) for an infinite 1D periodic array

of lossless magnetodielectric spheres with radius a equal to .45d and relative permittivity and permeability given
by εr = µr = 20. For magnetodielectric spheres, Se = −(3/2)ibsc1 and Sm = −(3/2)iasc1 , where bsc1 and asc1 are
the electric- and magnetic-dipole Mie scattering coefficients, respectively. The first electric and magnetic dipole
resonances of the spheres occur at ka = .214, which corresponds to kd = .475 in Figure 2. The second branch
(not shown) of this kd–βd diagram is centered about the second electric and magnetic dipole resonances that
occur at kd = .813; and so on.

TWO- AND THREE-DIMENSIONAL PERIODIC ARRAYS

The kd–βd diagrams for 2D periodic arrays of acoustic monopoles can be found straightforwardly with the help
of the formula [8]
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which expresses the fields of an infinite line of acoustic point sources in terms of an infinite sum of discrete
cylindrical waves. To find the kd–βd diagrams for 3D periodic arrays of acoustic monopoles, we also need the
corresponding formula [8]
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where kml =
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k2 − (2πm/d)2 − (2πl/d)2 is positive real (positive imaginary) according as (kd)2 > (<) (2π)2(m2+

l2). This equation (13) expresses the fields of an infinite plane of acoustic point sources in terms of an infinite
sum of discrete plane waves. Taking the curl once and twice of (12) and (13) multiplied by x̂, ŷ, or ẑ gives
similar formulas for the electric and magnetic fields of infinite lines and planes of electric and magnetic dipoles
oriented is the x, y, and z directions.

In particular, applying these formulas to 3D periodic arrays of lossless coupled orthogonal electric and
magnetic dipoles oriented perpendicular to a rectangular coordinate (x, y, or z) direction of propagation and
separated on a cubic lattice by a distance d, we obtain a transcendental equation in the same form as (9) but
now with Σ1 and Σ2 given by [8]
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(Rapidly convergent formulas [9, sec. 8.522] exist to efficiently evaluate
∑∞

l=1 Y0(lkd).)
Figure 3 shows the lowest branch of the βd–ka diagram computed from (9) with Σ1 and Σ2 inserted from

(14) and (15) for an infinite 3D periodic array of lossless magnetodielectric spheres with radius a equal to .4924d
and relative permittivity and permeability given by εr = µr = 20. (Unlike 1D and 2D arrays, fast waves on
lossless 3D arrays are not attenuated.) Figure 4 plots the effective relative permittivity εeffr and permeability
µeffr versus ka obtained from the formula εeffr = µeffr = sign[dk/dβ](a/d)βd/(ka). We choose a/d = .4924 and
ka along the horizontal axis in Figures 3 and 4 in order to display the good agreement (except near ka = .2)
with the corresponding approximate results obtained by Holloway et al. [10, fig. 7].
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