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Abstract

In this paper, we show the application of a new method

for merging weather radar data with point rainfall measure-

ments from a network of rain gauges. The method, ap-

plied to a catastrophic rainfall event occurred in the Marche

region in Italy, is based on the space-time adaptive com-

putation of the coefficients of the power-law relationship

with which radar reflectivity is converted into rainfall rate.

Results are compared with those obtained by a standard

method used for quantitative estimation of rainfall based on

rain gauges and radar data.

1 Introduction

Quantitative precipitation estimation (QPE) is fundamen-

tal to forecast and prevent extreme precipitation events.

Weather radars are excellent instruments to define rainfall

patterns and their evolution in time with a remarkable tem-

poral and spatial resolution, but they are not considered

reliable from a quantitative point of view [1], [2]. As a

matter of fact, radar estimates of rainfall are based on the

power backscattered from a resolution volume aloft: the

conversion of the radar reflectivity Z to rainfall rate R is

demanded to Z–R relationships which may cause high er-

rors if their coefficients are not chosen after proper com-

parison of radar and rain gauge data or at least by taking

into account the type of rainfall phenomenon. For this rea-

son, QPE relies mostly on networks of rain gauges, as they

measure (cumulated) rainfall directly at ground, in a given

position. Nevertheless, such networks alone may not re-

sult adequate to detect and monitor critical rainfall events,

which often combine a very intense rainfall with a limited

extension of the rainfall cells. Over the years several meth-

ods of merging radar and rain gauges data have been pro-

posed with the aim of improving the QPE [3]. An exam-

ple is kriging with external drift (KED), which is a solution

based on the classical weighted interpolation of raingauge

data (kriging) combined with further information provided

by radar data [4]. As shown in [5], even KED may reveal

inadequate to provide precise information in the aforemen-

tioned cases of critical events. An alternative to KED is the

algorithm presented in [5] - referred to as STACC (Space-

Time Adaptive Conversion Coefficients) in the following -

which relies mostly on the radar reflectivity Z for what con-

cerns the spatial pattern of the rainfall phenomenon, while

uses the information provided by the rain gauge network to

calibrate, on a cell-by-cell basis, the coefficients of the Z–R
relationship providing the quantitative estimates of rainfall.

In this paper, we show the results of the application of the

STACC and KED methods to the case of a severe storm oc-

curred on September 15, 2022 in the Marche region (Italy),

which caused extensive damage and death to 12 people.

2 The STACC algorithm

The STACC algorithm is briefly summarized here, while

the details can be found in [5]. At a given position ex-

pressed in longitude (ln) and latitude (lt), the average rain-

fall rate over a time interval T is given by RT (ln, lt). In the

following, the model

log10(RT (ln, lt)) = AT (ln, lt)+BT (ln, lt) ·ZT (ln, lt) (1)

is used, where ZT (ln, lt) is the radar reflectivity (in dBZ)

averaged in space (over Nz neighbor resolution cells) and

in time (over T ), while AT (ln, lt) and BT (ln, lt) are two

space-varying parameters that rule the dependence between

radar and rain gauges data. Let Tw be an interval such that

Tw ≤ T . For a generic kth rain gauge of the network, lo-

cated in (lnk, ltk), let ZW (k) be the space-time average over

Tw of the reflectivity measured by the radar in a neigh-

bor of (lnk, ltk) and RW (k) be the time average over Tw of

the rainfall rate measured by the rain gauge. The quan-

tities AT (lnk, ltk) and BT (lnk, ltk), relative to the position

to the specific position (lnk, ltk), are obtained by means of

a weighted linear regression method, as proposed in [6],

applied to the set of couples (log10(RW (k)),ZW (k)). The

values of AT (ln, lt) and BT (ln, lt), in a generic position

(ln, lt), are calculated by spatial interpolation of the val-

ues AT (lnk, ltk) and BT (lnk, ltk), achieved with the previous

procedure for the rain gauges positions. After all, the cu-

mulated rainfall over the period T , at the generic position,

is given by

CRT (ln, lt) = T ·RT (ln, lt). (2)

In summary, this procedure generates a space-varying Z–

R relationship over the specific observation time T ; more



specifically, at each rain gauge position the coefficients

of the relations are calibrated by using the observed rain

gauges data, while, at any other position, they are obtained

by spatial interpolation.

The basic philosophy of this method is using radar as the

primary instrument to estimate the spatial pattern of the

rainfall – thanks to its excellent resolution – and using rain

gauges as auxiliary instruments to improve the poor quanti-

tative accuracy, typical when a non-adaptive, neither in time

nor in space, a priori Z–R relationship is used.

3 Experimental results

In this Section we show some sample results of the ap-

plication of the STACC algorithm to the severe rainfall

phenomenon occurred over the Marche region in Italy on

September 15, 2022. The results obained with the STACC

algorithm are compared with those obtained with the KED

method [4]. A leave-one-out cross-validation is presented

in order to quantitatively assess the performance of both

methods.

3.1 Cumulated rainfall estimation

The parameters of the STACC algorithm were set as fol-

lows: Nz = 9, Tw = T = 60 min. Fig. 1 shows ZT (ln, lt)
over T jointly with position and number of the rain gauges

available over the Marche region.
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Figure 1. Radar reflectivity ZT (ln, lt) from 16:30 to 17:30

(local time), September 15, 2022.

The regression yielding AT (lnk, ltk) and BT (lnk, ltk) (i.e.,

for rain gauges positions) is assumed valid if the output pa-

rameters fall within (suitably defined) ranges that identify

reasonable model coefficients (typically found in the litera-

ture); in the other cases, invalid data are assumed. In Fig-

ure 1, valid rain gauges, which are also those utilized in

the interpolation procedure to find AT (ln, lt) and BT (ln, lt)
everywhere, are marked with blue crosses, whereas those

marked with black crosses represent the invalid rain gauges;

red crosses indicate rain gauges with missing data. As can

be noted, the majority of the black crosses are found in ar-

eas where reflectivity (and presumably rainfall) is very low.

The cumulated rainfall, obtained from (2), is shown in Fig-

ure 2-(a). For comparison, the cumulated rainfall map esti-

mated through the KED method – performed by the open-

source library GSTools [7] – is shown in Figure 2-(b): in

this case, all available rain gauges data are used for interpo-

lation (also the ones indicated with black cross). Note that

the area in Figure 2-(a) is limited by the convex hull delim-

ited by the blue-crossed rain gauges, as these are the ones

available for spatial interpolation.

The difference between the two approaches is shown in Fig-

ure 2-(c). It is evident that STACC identifies a larger area

where high cumulated rainfall occurs with respect to KED.

In general, KED tends to smooth quite heavily the informa-

tion brought by the spatial reflectivity pattern, unless point

information rain gauges confirm such information. A typ-

ical example can be seen in the case under exam by ob-

serving the four circled high reflectivity areas in Figure 2-

(c). The area marked with ’B’ includes rain gauges #65

and #68, which have recorded the highest cumulated rain-

fall: therefore, the KED estimation has placed there a peak

in the interpolated map (see Figure 2-(b)) and the differ-

ence with respect to the STACC estimate is very small. On

the contrary, since no rain gauges are located within areas

marked with ’A’, ’C’ and ’D’ in Figure 2-(c), KED assumes

that rainfall is not so heavy there. Evidently, the STACC es-

timate is not affected by this issue, while in general there is

a risk that KED fails to detect high rainfall areas.

3.2 Cross-validation

In order to evaluate the STACC and KED algorithms from a

quantitative point of view, a leave-one-out cross-validation

has been carried out [8]. The procedure consists in exclud-

ing in turn one of the available rain gauges from the applica-

tion of both rainfall estimation methods. The measurement

recorded by such rain gauge is assumed as ground truth and

compared to the estimates obtained in that position by each

of the two methods.

The errors ΔCR between the estimates, obtained by using

either STACC or KED, and the ground truth measured by

each valid rain gauge of the network, are shown in Figure 3-

(a). Table 1 shows the cross-validation results for some of

the rain gauges characterized by large errors. KED under-

estimates the real amount of rainfall in rain gauges placed

where radar reflectivity is highest (see rain gauges #65, #68,

#71 and #482 in Figure 3-(b) and Table 1). The error in-

creases if neighbouring rain gauges have recorded very dif-

ferent values: for instance, remarkable underestimates are

obtained for rain gauges #65 and #68 due to the proximity

of rain gauges #168 and #671; for the same reasons, we get

a remarkable overestimates for rain gauges #168 and #671.

Also in the STACC method the errors depend on the neigh-

bours rain gauges, but STACC is less sensitive to this issue
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Figure 2. Cumulated rainfall CRT (ln, lt) from 16:30 to

17:30 (local time), September 15, 2022, estimated by the

STACC algorithm (a) and by the KED method (b). The dif-

ference between the two maps is shown in (c).

– compared to KED – because it gives more weight to radar

reflectivity. In fact, as can be seen in Table 1, the errors

related to the same four rain gauges are smaller. However,

also the STACC approach can lead to errors, which typi-

cally occur when at least two close rain gauges with simi-

lar associated reflectivity have recorded different cumulated

rainfall. For instance, it is possible to refer to rain gauges

#65 (with #68) and #71 (with #68 and #482).
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Figure 3. Cross-validation of data from 16:30 to 17:30 (lo-

cal time), September 15, 2022: error between estimates and

ground truth vs. rain gauges id (a); positions of the rain

gauges with the highest estimation errors (b).

Table 1. Cross-validation results in selected rain gauges

Rain ZT (lnk, ltk) Recorded STACC KED

gauge (dBZ) rainfall estimate estimate

(mm) (mm) (mm)

#65 45.6 90 107.8 36.3

#68 43.6 98.4 55.3 35.4

#168 27.6 2 6.5 64.9

#71 45.3 44.6 79.5 31.6

#482 45.7 71.4 61.2 28.4

#671 26.5 11.4 4.6 48.8



4 Conclusion

The sample results shown in this paper demonstrate that

merging rain gauge and radar data through the KED ap-

proach may not always be the most appropriate way to re-

trieve rainfall pattern and to quantitatively estimate cumu-

lated rainfall, especially where the rain gauge network is not

sufficiently dense with respect to the size of the local rain-

fall peaks. A solution comes from giving a greater weight

than in KED to the spatial pattern of radar reflectivity. This

is the approach used by STACC, which seems to perform

much better particularly in those areas where radar reflec-

tivity is high but rainfall information by rain gauges is not

available.
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