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Abstract

In this paper, we present a calibration and imaging pipeline
whose processing functions directly operate on visibilities
to which Baseline-Dependent Averaging (BDA) has been
applied. This avoids the need to expand BDA-ed visibil-
ties to full resolution. We demonstrate that this reduces
the computational needs for calibration (both visibility pre-
diction and solving) and (de)gridding by processing fewer
visibilities without causing unexpected degradation of the
results. This first prototype of a BDA-enabled calibration
and imaging pipeline allows further exploration of BDA-
enabled processing, for which we raise several questions.

1 Introduction

The visibilities (crosscorrelated data) acquired by a radio
interferometer need to be sampled at a sufficiently high
temporal and spectral resolution to avoid unacceptable lev-
els of time and bandwidth smearing [1] on the longest base-
lines of the interferometer array. This implies that the time
and frequency resolution of the visibility data and, hence,
the visibility data volume, are driven by the needs of the
longest baseline. On shorter baselines, longer integration
times per sample and wider frequency channels would be
tolerable. Cotton [2] and Skipper [3] have therefore consid-
ered baseline-dependent averaging (BDA) in the context of
the Very Large Array (VLA) [4] and the Square Kilometre
Array (SKA) [5]. In a detailed assessment of the impact
of BDA [6], it was concluded that BDA should not have
a detrimental effect on calibration and imaging apart from
an expected and small increase in coherence loss on the
shorter baselines. Besides reducing the raw data volume,
BDA can also be used to tune the spatial filtering during
imaging [7, 8] and tools have been developed to apply such
advanced BDA schemes [9].

BDA can potentially also reduce the computational burden
of calibration and imaging by reducing the number of data
points that these processing functions need to process. Un-
fortunately, most production-ready radio astronomical pro-
cessing functions do not operate on BDA-ed visibilities di-
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Figure 1. Standard workflow for DD calibration in DP3.
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rectly. This is circumvented by expanding the BDA-ed vis-
ibilities first to regularly sampled visibilities at the highest
resolution before the calibration and imaging functions pro-
cess the visibility data. This approach preserves the bene-
fits of reduced storage and I/O requirements, but does not
reduce the compute load of calibration and imaging func-
tions. In this contribution, we present a rudimentary cal-
ibration and imaging pipeline avoiding the visibility ex-
pansion step by processing the BDA-ed visibilities directly.
This pipeline includes a direction-dependent (DD) calibra-
tion step in the Default Pre-Processing Pipeline (DP3)! and
an imaging step in WSClean® [10]. We discuss the steps
taken to create these BDA-enabled processing functions
and show preliminary performance results highlighting the
advantages of processing functions that support BDA na-
tively.

2 BDA-enabled DD calibration

We used DP3 for DD calibration, for which it provides the
DdeCal data processing step. The standard workflow for
this processing step is shown in Fig. 1. In this workflow,
the MSReader reads the visibility data from a stored Mea-
surement Set (MS) along with the meta-data such as flags
and (u,v)-coordinates associated with them. The (u,v)-
coordinates are used to predict the visibilities based on an
initial source model. DP3 can either predict visibilities by
taking the fast Fourier transform of an image of the source
model followed by a degridding step using Image Domain
Gridding (IDG) [11] or by a direct Fourier transform of a
specified list of discrete sources. For the experiments in this
paper, we used (and adapted) the latter approach, because
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the direct Fourier transform is usually faster for the source
models with limited complexity typically used in DD cali-
bration and it is easier to adapt to BDA. The predicted and
observed visibilities are then fed into a Solver that esti-
mates the direction-independent (DI) and DD gains. The
DD gains are stored into an h5parm file that can be used to
correct for them in the imaging process while the DI gains
are used to correct the visibilities, which are then written
to the output MS by the MSWriter. In the simulation de-
scribed in Sec. 4, we used DI gains only and applied the
appropriate corrections to the visibilities.

To turn this into a BDA-enabled workflow, we adapted the
MSReader and MSWriter to read and write BDA-ed vis-
ibilities, enabled prediction of BDA-ed visibilities and ad-
justed the Solver to estimate gains based on visibilities with
baseline-dependent integration times and channel widths.
As mentioned in the introduction, BDA-ed visibilities can
already be processed by functions operating on regular vis-
ibilities by expanding the BDA-ed visibilities. We there-
fore started following that route and adapted the MSReader
and MSWriter to support reading and writing of BDA-ed
visibilities. To store the meta-data needed to interpret the
BDA-ed visibilities stored in the MS, we defined a few ad-
ditional MS keywords. In addition, a BdaBuffer class was
defined for in-memory storage of the BDA-ed visibilities
after reading them from the MS.

The second step was to directly predict the BDA-ed visi-
bilities. Initially, we expected that the fastest way would
be to use the direct Fourier transform to predict the values
at the (u,v)-coordinates of the BDA-ed visibilities. That
approach, however, turned out to be slower than predict-
ing visibilities at full resolution followed by BDA. This
counter-intuitive result was caused by the fact that the ge-
ometric delays and DD gain of the primary beam need to
be calculated per station first after which the two complex
values associated with a specific baseline need to be mul-
tiplied. To make this work, we had to divide the baselines
into groups with identical averaging intervals and evaluate
the station-based factors for each of these baseline groups.
This caused an increase in compute time spent on beam
evaluations that exceeded the decrease in compute time
spent on computing model visibilities. We therefore de-
cided to predict the visibilities at full resolution followed
by a BDA step. This has the additional advantage that the
small increase in coherence loss on the shorter baselines is
automatically taken into account in the visibility prediction.

The last and most challenging step is to adapt the calibra-
tion solve algorithm (Solver). The main challenge here is
the organisation of the data. The visibility data and weights
should also be ordered in such a way that the solver is not
slowed down by memory accesses. These technicalities
are handled by the BdaSolverBuffer class. The BDA-
enabled workflow resulting from the steps above is sketched
in Fig. 2.

A complicating factor in calibration is that different fac-

tors require different solution intervals. For example, iono-
spheric corruptions in LOFAR are typically solved for on
time scales of a few seconds while solving for the band-
pass, beam errors and Faraday rotation is performed with
longer time intervals [12]. A future direction to look into
is thus to expand and average the data at specific points in
the pipeline to make maximal use of the computational and
storage benefits of BDA, while still allowing short solution
intervals.

3 BDA-enabled imaging

The top panel of Fig. 3 shows our calibration and imaging
pipeline after the adjustments made to DP3. In this situ-
ation, we still have to expand the visibilities to full reso-
lution before storing them in a MS suitable for WSClean.
To avoid this step, we made similar changes to the MS I/O
functions of WSClean as we did for DP3. The internal data
structures of WSClean can quite naturally handle BDA-
ed visibilities, because WSClean already supports visibil-
ity averaging prior to gridding to reduce the compute load
of gridding. Supporting BDA input data therefore mainly
consists of implementing a BDA MS reader and ensuring
that the BDA-ed visibilities got properly organised into the
data structures of WSClean. This BDA-enabled workflow
is shown in the bottom panel of Fig. 3.

4 Results

We ran the BDA-enabled pipeline on a simulated data set
derived from an actual MS of an observation with the Dutch
LOFAR stations on the Bootes field. The visibility data in
this MS were replaced by simulated visibilities, predicted
based on a source model composed of a 9-by-9 rectangu-
lar grid of 1-Jy point sources spaced 0.5 degrees from each
other. As the original MS was pre-averaged, the integra-
tion time per visibility was already 8 s. Since WSClean
does not yet support BDA over frequency channels, we de-
fined a BDA scheme integrating over time only with inte-
gration over integer multiples of the nominal 8 s integration
with transitions to the next integration interval at baseline
lengths of 20/1,20/2,20/3, ... km up to a maximum inte-
gration time of 96 s on the shortest baselines. This BDA
scheme provided a reduction of the visibility data volume
to 28.7% of the original volume, which already was only
12.5% of the raw data volume produced by the LOFAR cor-
relator due to pre-averaging from 1 s to 8 s, i.e., with just
BDA over time, already only 3.6% of the raw visibility data
volume was left.

To assess calibration, we multiply all visibilities by 4 to
emulate a direction-independent gain of 2. As the simu-
lated data are noise-free and generated with the same DP3
visibility predict step, this gives perfect results (down to
numerical accuracy) for the regular data. The relative aver-
age (over stations) calibration error for the BDA-ed data is
shown in Fig. 4 as a function of solution interval for a few
representative frequency channels. The errors are (typically
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Figure 2. BDA-enabled workflow for DD calibration in DP3.
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Figure 3. Calibration and imaging pipeline with BDA-
enabled calibration step prior to (top) and after (bottom)
enabling WSClean to read BDA-ed visibilities.
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Figure 4. Average relative gain error as a function of so-
lution interval with BDA. The colors of the dots represent
results for different frequency channels.

well) below 0.5% as expected [6] with a few significant out-
liers at specific solution intervals. This indicates that the
combination of averaging factors in the BDA scheme and
length of the solution interval should be chosen carefully.
Our choice causes a situation in which many averaging in-
tervals crossed solution interval boundaries, which is likely
suboptimal. This can be avoided by ensuring that all aver-
aging intervals are integer divisors of the solution interval.

Fig. 5 shows the upper left quadrant of the images obtained
from the regular data and the BDA-ed data. In the image
reconstructed from the regular data, all sources appear as
well-defined point sources of unit power as expected (our
simulation predicted the 8-s averaged visibilities at their

step ‘ regular ‘ BDA ‘ % reduction
DP3 - DdeCal (predict) 2:45 1:38 40%
DP3 - DdeCal (solve) 3:30 1:18 62%
WSClean - inversion 10:29 | 08:21 20%
WSClean - prediction 08:16 | 06:24 22%
WSClean - deconvolution | 05:21 | 06:55 -29%
overall 30:21 | 24:36 18%

Table 1. Compute performance of the BDA-enabled work-
flow and the regular workflow.

mid-points without taking the small effect of decorrelation
into account for the off-center sources). The image recon-
structed from the BDA-ed data clearly shows the effect of
increasing time smearing with increasing distance from the
phase center. Fortunately, these artefacts only appear at a
very low level as signified by the strongly zoomed in color
scale needed to make them visible.

Table 1 shows the CPU time taken by the various process-
ing steps for the pipeline working on the regular data as
well as for the pipeline working on BDA-ed data. As ex-
pected, the DdeCal step in DP3 and the inversion and pre-
diction steps in WSClean benefit from the smaller visibility
data volume of the BDA-ed data set. The deconvolution
step in WSClean, however, needs careful configuration to
avoid an excessive number of minor cycles in an attempt to
deconvolve "source structures” caused by time smearing at
the few hundred pJy level. In this case, we found that 9
major cycles was a reasonable stopping criterion, balancing
the growth of the number of minor cycles per major cycles
against the depth of cleaning. If deeper imaging is needed,
a less aggressive BDA scheme should be used.

5 Conclusions

In this paper, we present a BDA-enabled calibration and
imaging pipeline with a DD calibration, imaging and de-
convolution step that work directly with BDA-ed visibili-
ties. We demonstrate the advantage of operating directly
on BDA-ed visibilities in terms of computational resources
needed for calibration, prediction, deconvolution and inver-
sion. Our results also indicate that certain algorithm set-
tings produce suboptimal results, either in terms of scien-
tific quality or in terms of computational performance. With
growing experience, we will be able to avoid such settings.



Figure 5. Image reconstructed using the standard workflow
(top) and using the BDA-enabled workflow (bottom) based
on the same data set. The linear grey scale runs from —5-
107 to 5- 10~ to make the imaging artefacts visible (the
sources have unit power).
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