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Abstract

Electrical properties could become a source of contrast for
non-calcified tumor tissues. Magnetic Resonance Electrical
Property Tomography (MREPT) relies on numerical differ-
entiation to solve the partial differential equations (PDEs)
to reconstruct electrical properties. However, the numer-
ical differentiation for derivatives produces artifacts near
tissue edges and amplifies noise. In this work, Physics-
informed neural networks (PINNs), are employed to es-
timate derivatives for MREPT with automatic differentia-
tion enabled by neural networks to improve noise robust-
ness and reduce edge artifacts. PINNs require the balance
of various loss functions and information from collocation
points of ground truth and image boundary to learn to esti-
mate the derivatives. In this work, a warm-up mechanism is
used to reduce the complexity of the multiple loss balance.
Results showed that even with only three collocation points
and boundary conditions, reconstructions can be made from
noise-contaminated source images (SNR 50). This proves
that PINNs achieved noise-robust estimate of partial deriva-
tives, thus leding to noise-robust conductivity reconstruc-
tion.

1 Introduction

Electrical properties are quantitative properties of biolog-
ical tissues that could enhance the determination of non-
calcified tumorous tissues [1]. Moreover, knowledge of
electrical properties is a foundation to calculate specific ab-
sorption rate (SAR) for RF safety where humans are ex-
posed to RF fields., e.g., wireless power transfer [2]. Mag-
netic resonance electrical properties tomography (MREPT)
is a technique to reconstruct the conductivity of tissues from
MRI measurements, the B1 fields [3]. The reconstruction
formulation is based on Maxwell’s equations. To decrease
scan time, conductivity focused formulations have been de-
veloped [4], in which, the MRI’s phase sum of B+

1 and
B−1 (ϕ+ + ϕ−), also known as the transceive phase (ϕ tr)
is used to reconstruct the conductivity of tissues. A com-
mon formulation for phase-based conductivity reconstruc-
tion is referred to as std-EPT. In std-EPT, the reconstructed

conductivity is assumed to be homogeneous. While this
assumption simplifies the reconstruction, it produces ar-
tifacts near tissue edges and is noise susceptible due to
being based on the second-order partial derivative of the
ϕ tr. To reconstruct the conductivity without the homo-
geneity assumption, convection-reaction EPT (cr-EPT) was
proposed [5]. The resulting convection-reaction partial dif-
ferential equation (PDE) is discretized and solved as a set
of linear equations. However, numerical instabilities ap-
pear in the solution associated with the discretization. A
viscosity-type regularization term was introduced in [6], to
dampen such numerical instabilities. Furthermore, a cor-
responding phase-based stabilized cr-EPT (stab-EPT) was
proposed [4]. However, because the regularization term
is set by experience it leads to undershooting of the re-
constructed conductivity. MREPT’s reconstruction of con-
ductivity requires the numerical calculation of ϕ tr spatial
partial derivatives. Savitzky-Golay filter based derivative
calculation [7] is an accurate method [6]. However, this
method still suffers from erroneous values near tissue edges
and is susceptible to noise. On the other hand, solvers
of PDEs by data-driven Physics-informed neural networks
(PINNs) have been proposed recently [8] to solve fluid sim-
ulation associated PDEs. PINNs are shown to efficiently
solve multidimensional PDEs [9]. In PINNs, a neural net-
work (NN) is trained to predict a field according to bound-
ary conditions, and collocation points. Next, through auto-
matic differentiation, spatial or temporal partial derivatives
are estimated to solve a PDE. The residual of the PDE is
added to the loss function. In this work, we propose a PINN
method to predict conductivity values from noisy phase
measurements. By applying phase-based MREPT formula-
tions as constraints a framework for noise-robust conduc-
tivity reconstruction that overcomes current numerically-
based formulations is created.

2 Methods

The canonical formulation for MREPT also known as the
Helmholtz formulation [10] is shown as follows.
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Figure 1. The neural network (NN) learns to predict the ϕ tr, from the location values (x,y). ϕ tr is backpropagated to the location
values to estimate partial derivatives ∇ϕ tr,∇2ϕ tr. The partial derivatives are used to calculate the conductivity with Eq.2 and
Eq.3. Lastly, the numerical derivative of ϕ tr is calculated numerically to solve Eq.6 and added to the total loss function. The
sum of the loss functions guide the conductivity reconstruction.

Figure 2. High-pass 16 rung birdcage coil in quadrature
mode at 3T loaded with cylindrical phantom

where κ is the complex permittivity ( σ

ωε0
+ iεr), σ is the

conductivity in S/m, εr is the relative permittivity, ω is the
frequency of the applied RF waves (i.e. B1-fields), and B+

1
is the RF field of transmit coils, B+

1 = Bx + iBy [11]. The
phase-based std-EPT method assumes homogeneity of the
reconstructed conductivity to simplify the Helmholtz for-
mulation as follows.
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where γ is the inverse of the conductivity (1/σ ). This
method relies uniquely on the calculation of the second or-
der derivative, which makes it susceptible to noise. The
phase-based cr-EPT formulation removes the homogeneity
assumption to improve the reconstruction accuracy. The re-
sulting formulation is as follows.
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where ρ is the coefficient of the viscosity-type regulariza-
tion term. Although this formulation is more accurate than
std-EPT, it still suffers from noise susceptibility. Fig. 1
shows a diagram for the proposed single case reconstruc-
tion method. A set of spatial coordinates (x,y) are input
to a small NN, then the NN output is the predicted value
of ϕ tr at the corresponding spatial coordinates according to
the data loss function below,

Lossϕ tr = MSE(ϕ tr, ϕ̂ tr) (4)

where MSE is the mean squared error function that mea-
sures the fidelity between the predicted ϕ̂ tr by the NN and
ϕ tr value from the measurement. Next, through automatic
differentiation (backpropagation) [12], the partial deriva-
tives with respect to the spatial values (x,y) are estimated
according to the predicted ϕ̂ tr. As the second-order deriva-
tives are needed to reconstruct the conductivity, the results
of the first backpropagation are summed and backpropa-
gated once more to produce a second-order partial deriva-
tive (∇2ϕ̂ tr). With the partial derivatives, a conductivity
map, σ̂ , can be constructed based the std-EPT formula-
tion on Eq. 2, or the stab-EPT formulation on Eq. 3. With
the reconstructed σ̂ , a second loss function is introduced to
match boundary conditions and collocation points from the
ground-truth conductivity (σ ).

Lossσ = MSE(σ , σ̂std-EPT)

+MSE(σ , σ̂stab-EPT)
(5)

A two-pixel width Dirichlet boundary condition is applied
around the periphery of the region of interest (ROI). And
three pixels inside the ROI are selected as collocation
points. Lastly, a PDE residual loss based on the Eq. 3 can



Figure 3. ϕ tr from numerical experiment SNR = ∞, 50, ground truth conductivity with added boundary conditions (BC) and
collocation points (CP) in yellow, 50 SNR reconstructions with numerical derivatives, 50 SNR reconstructions by PINN without
BC-CP present, 50 SNR reconstructions without Helmholtz equation residue, and 50 SNR reconstructions by the proposed
method PINN with Helmholtz equation residue.

be added according to the equation below,

LossPDE = |∇γ∇ϕ
tr + γ∇

2
ϕ

tr−ωµ0| (6)

The gradient of the predicted conductivity (∇γ) is numer-
ically calculated through forward differences. This loss
function serves as a direct guide for the NN to solve the
PDE and decrease the degrees of freedom of the solution
provided by the NN function. The loss functions terms are
weighted and summed as it follows.

Loss = λ1Lossϕ tr +λ2Lossσ +λ3LossPDE (7)

For the test case, the weighting values are found empiri-
cally (λ1 = 200, λ2 = 1 and λ3 = 0.0008) and minimized
by modifying the NN’s parameters according to "Adam"
algorithm [7]. To maintain data fidelity to the phase mea-
surement, a warm-up mechanism is adapted where for the
first 10 thousand epochs Lossϕ tr is the only guiding force
for the NN. The NN training took approximately 1 hour for
100 thousand epochs on a Nvidia GeForce RTX 2070 GPU
card.

A numerical simulation is generated in Sim4Life© as a test
case, composed of a binary-value cylinder phantom. The
phantom is placed inside a high-pass 16 rung birdcage coil
excited in quadrature mode at 3T. The coil dimensions are
14 cm radius and 28 cm length. The phantom inside the coil
can be seen in Fig. 2. The 5 cm2 ϕ tr at the center of the coil
is extracted and noise is added according to formulations in
the literature [5]. The noise-contaminated ϕ tr is use as the
label for Eq. 4.

3 Results and Discussion

The first column in Fig. 3 shows the ϕ tr of the binary-
valued cylindrical structure at SNR = ∞. Below, the noise-
contaminated ϕ tr with added white noise at SNR = 50 is
shown.

On the top of the second column, the ground truth conduc-
tivity is shown, i.e., the conductivity values of the binary-
valued cylinder, while below the conductivity is shown with
the marked location of image boundary conditions and col-
location points in yellow.

On the third column the numerical reconstructions at SNR
= ∞ by std-EPT from Eq. 2 on the top, by stab-EPT from
Eq. 3 in the middle, and the numerically estimated Lapla-
cian (∇2ϕ tr) is shown at the bottom.

On the fourth column, the numerical reconstructions at
SNR = 50 as well as the numerically estimated Laplacian
at the bottom.

To the right, PINN reconstructions and estimated Laplacian
are shown without Eq. 5 during training, i.e. boundary con-
ditions and collocation points are not provided during train-
ing. Next, PINN reconstructions and estimated Laplacian
are shown without Eq. 6 during training, i.e., the residual
is not accounted for. Lastly, in the last column, the recon-
structions from both methods and corresponding Laplacian
from the proposed PINN are shown.

The structural similarity index (SSIM) [13] reconstruction
metric is added below each conductivity reconstruction, it
is shown that when the PINN with the residual is added the
reconstructions show higher similarity to the ground truth
conductivity.

Moreover, the PINN estimated, and numerically calculated
Laplacian are shown. Laplacian SSIM values are shown
compared to the numerically calculated Laplacian at SNR =
∞, it is shown that the estimated Laplacian by the proposed
method possesses the highest SSIM value.

Results indicated that the proposed PINN accurately esti-



Figure 4. Loss curves during training for the proposed
PINN reconstructions method. Lossϕ tr shows the sustained
accuracy of the predicted ϕ̂ tr. Lossσstd−EPT and Lossσstab−EPT
shows the convergence of the boundary conditions and col-
locations points according to std-EPT and stab-EPT formu-
lations, respectively. LossPDE shows the residual added.

mates partial derivatives for MREPT even in high noise
conditions, this can be seen by comparing the Laplacian
(∇2φ tr) calculated numerically in the third column which
is highly affected by noise or the Laplacian estimated by
PINN on the last column which does not show noise-related
artifacts.

The loss curves Lossϕ tr , Lossσstd−EPT and Lossσstab−EPT inf
Fig. 4 show the convergence of PINN to the ϕ tr, the bound-
ary conditions and collocation points. LossPDE is shown
to increase, nonetheless, it bounds the possible solutions as
can be seen by the peaks in the loss curves and the recon-
struction results on the last column of Fig. 3.

4 Conclusion

In this work, PINNs are used for the first time in the liter-
ature to address the noise sensitivity of MREPT due to nu-
merical differentiation. A training framework with a data-
fidelity warm-up mechanism is adopted, and a novel dou-
ble reconstruction technique is produced to extract further
information from the collocation points. This is an initial
step to develop a PINN-MREPT to reconstruct conductiv-
ity. Future work will focus on including further physical
constraints in the form of equations to the residue loss to
further reduce the number of collocation points needed.
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