Ionospheric frequency sounding experiments with SuperDARN HF radars: First results

Evan G. Thomas(1), Simon G. Shepherd(1), Gareth Chisham(2), Darrell M. Elton(3), Maria F. Marcucci(4), Kathryn A. McWilliams(5), Nozomu Nishitani(6), and Kevin T. Sterne(7)

\begin{itemize}
\item (1) Dartmouth College, Hanover, NH, USA
\item (2) British Antarctic Survey, Cambridge, United Kingdom
\item (3) La Trobe University, Bundoora, Australia
\item (4) INAF-IAPS, Rome, Italy
\item (5) University of Saskatchewan, Saskatoon, Canada
\item (6) Nagoya University, Nagoya, Japan
\item (7) Virginia Tech, Blacksburg, VA, USA
\end{itemize}

1 Extended Abstract

The Super Dual Auroral Radar Network (SuperDARN) is an international network of more than 30 ground-based, high-frequency (HF) space weather radars which continuously monitor the line-of-sight Doppler velocity of plasma irregularities at E- and F-region altitudes in the mid- to high-latitude ionosphere [1]. We describe a new operating mode, based on the prior work of [2] and adapted for the current generation of SuperDARN radars, which is designed to collect oblique ionospheric sounding data in the down-time at the end of each 1- or 2-min radar scan. First results are shown from four network-wide tests in 2020 and 2021 demonstrating how the maximum usable frequency (MUF) and critical frequency of the ionospheric F2-layer (foF2) can be resolved across the SuperDARN radars’ extensive fields of view [3].

References

