Extragalactic Millimeter Transients in the Era of Next Generation CMB Surveys

T. Eftekhari(1,2), E. Berger(2), B. D. Metzger(3,4), T. Laskar(5,6), V. A. Villar(7,8,9), K. D. Alexander(2), G. P. Holder(10), J. D. Vieira(10,11,12), N. Whitehorn(13,14), and P. K. G. Williams(2,15)

(1) Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA, e-mail: teftekhari@northwestern.edu;
(2) Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA
(3) Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
(4) Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA
(5) Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK
(6) Department of Astrophysics, Radboud University, 6525 AJ Nijmegen, The Netherlands
(7) Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
(8) Institute for Computational & Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA
(9) Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
(10) Department of Physics, University of Illinois Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
(11) Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA
(12) Center for AstroPhysical Surveys, National Center for Supercomputing Applications, Urbana, IL, 61801, USA
(13) Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824
(14) Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
(15) American Astronomical Society, 1667 K Street NW, Suite 800 Washington, DC 20006 USA

The next generation of CMB surveys are poised to open a new window for transient discovery in the millimeter band. These surveys will cover a large fraction of the sky to unprecedented sensitivity and with high cadence, complementing existing wide-field radio and optical surveys. Using theoretical and empirical light curves for a wide range of extragalactic transients (including gamma-ray bursts, tidal disruption events, fast blue optical transients, neutron star mergers) in conjunction with known and estimated volumetric event rates, we explore the discovery phase space for millimeter transients in existing and near-term CMB surveys (ACT, SPT-3G, Simons Observatory, CMB-S4, CMB-HD). In each case, we use the CMB survey designs (area, depth, cadence, duration) to estimate detection rates and the resulting light curve characteristics. We find that CMB surveys will discover tens to hundreds of long-duration gamma-ray bursts (LGRBs), including the first large sample of reverse shock detections, facilitating detailed studies of the jet launching mechanism in LGRBs. Wide-field CMB surveys will also discover tens of fast blue optical transients, enabling the first unbiased sample of millimeter emission from these sources, and may detect up to several hundred tidal disruption events. Finally, we show that the next decade of CMB experiments may detect a small number of short-duration gamma-ray bursts, which will be well within the detection volume of next generation gravitational wave experiments like Cosmic Explorer.