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Abstract

Polyphase filterbank data of the Vela pulsar is acquired us-
ing the MeerKAT radio telescope and analysed using the
second-order frequency-frequency polyspectrum. The lack
of components off of the non-stationary manifold indicates
that the process is second-order stationary over timescales
of 0.8 microseconds. Additionally, the complex process is
found to be circular and thus requires only a small subset of
the possible definitions of the higher-order moments in its
characterisation.

1 Introduction

Pulsar radio signals are extraterrestrial transients which ex-
hibit a number of exotic features. Unfortunately, these
signals are faint and undergo adverse channel effects [1],
which makes the estimation of many features difficult.
Higher-order spectral analysis is a method for analysing
non-Gaussian signals which, in theory, offers a high signal-
to-noise ratio domain for signals corrupted by Guassian
noise [2]. It is believed that radio pulsar signals may contain
non-Gaussian components and so recent studies have inves-
tigated the application of higher-order spectral analysis on
pulsar radio signals [3]. However, the typical computation
of the higher-order spectra inherently assumes the station-
arity of the signal under operation and the computation of
the stationary spectra of non-stationary signals can result in
a phenomenon referred to as dimensional-reduction alias-
ing [4]. The more general polyspectra are better suited for
the analysis of non-stationary processes [5]. Additionally,
signals channelised by means of a polyphase filterbank are
complex signals and in this case there are multiple defini-
tions of the higher-order spectra [6]. In this case it is un-
clear which definition should be used. In this work, a high
time-frequency resolution observation of the Vela pulsar is
made using the MeerKAT radio telescope. The data from
the polyphase filterbank is tested for wideband stationar-
ity on short timescales and also for intrachannel circularity.
The results indicate that pulsar signals are proper, reduc-
ing the number of distinct definitions of the higher-order
spectra. They are also second order stationary over short
time periods. Various interesting features associated with
radio pulsars are discussed in Section (2). The approach
to higher-order spectra for non-stationary and complex pro-
cesses is presented in Section (3) and in Section (4) real

pulsar data is tested for statistical characteristics that de-
creases the complexity of future spectral analysis. Finally,
the conclusion is provided in Section (5).

2 Radio Pulsars

Radio pulsars are observable as extremely regular peri-
odic fluctuations in the local electromagnetic field strength.
They were discovered in 1967 when periodic signals were
observed at the output of a radiometer investigating scin-
tillation [7]. The source of the fluctuations was soon af-
ter identified as rotating neutron stars [8, 9] and a model
of a plasma-filled magnetosphere with open field lines was
proposed as the radiation mechanism [10]; the correspond-
ing signal model is amplitude-modulated Gaussian noise
[11]. This source-signal model is often referred to as the
"lighthouse" model and is in itself quite fascinating. How-
ever, pulsar radio signals often display features and be-
haviours which deviate from it and which have stirred up
great curiosity. One such feature is the existence of fluctua-
tions of pulse intensity that exist on timescales significantly
smaller than the pulse width and quasi-periodicities within
the pulses themselves [12]. Even stranger is the existence
of features within individual pulses that account for a large
proportion of the pulse energy but exist on the timescale of
microseconds and shorter. These features have motivated
an alternative model of radio pulsar signal as amplitude-
modulated shot noise caused by bunches of coherently ra-
diating particles [13, 14]. Determining whether or not pul-
sar radio signals are Gaussian, what timescale their most
rapid fluctuations occur on and to what extent periodicity
exists within individual pulses is made difficult by the fact
that individual pulses typically lie well below the instru-
mental noise floor. Pulsar signals are also afflicted by ad-
verse channel effects such as dispersive smearing and scin-
tillation which smooths out fine features and increases the
Gaussianity of non-Gaussian signals. The MeerKAT radio
telescope is an incredibly sensitive instrument which has
already proven itself to be a powerful tool for pulsar as-
tronomy [15]. Even when using 54 dishes of the MeerKAT
to observe Vela, a bright pulsar, the individual pulses are
obscured enough to limit the extent to which subtle fea-
tures are resolvable. This is illustrated in Figure 1. It is
therefore common to study the integrated pulse intensity of
pulsars instead the single pulse statistics. The normalised
intensity profile of Vela as well as the integrated Stokes Q



parameter are illustrated in Figure 2. The sweep in the po-
larisation parameter is typical of pulsars and is the result of
a highly linearly polarised source moving through the ob-
server’s line of sight along the surface of a rotating sphere
[16]. While the average profile provides high fidelity mea-
surement of the average signal behaviour, it does little to
uncover the single pulse statistics. Due to their ability to
characterise non-Gaussian processes and to suppress Gaus-
sian noise, higher-order spectra provide a potential means
of studying the single pulse behaviour of pulsar radio sig-
nals.

Figure 1. A single pulse from the Vela Pulsar observed
with 54 MeerKAT dishes at 1650 MHz with a bandwidth of
835 kHz.

Figure 2. The I and Q Stokes parameters of the observation.
The I parameter is normalised by the peak intensity and the
Q parameter is normalised by the Stokes I parameter.

3 The Polyspectra of Non-stationary Com-
plex Processes

The higher-order spectra are calculated as the multidi-
mensional Fourier transforms of higher-order moment and
cumulant functions. The nth-order moment spectrum
of a continuous-time random function x(t) is an n − 1-
dimensional function calculated as,

Mn
x (ω1, ...,ωn−1) =∫

ω1

...
∫

ωn−1

m(τ1, ...,τn−1)e− jω1τ1 ...e− jωn−1τn−1

dω1...dωn−1, (1)

with the nth order moment function defined as,

mn
x(τ1, ...,τn−1) = E{x(t)x(t − τ1)...x(t − τn−1)}. (2)

The τ variables are independent time lags and E is the ex-
pectation operator. The cumulant spectrum is defined sim-
ilarly. These multidimensional functions are rich in infor-
mation regarding the statistical nature of the transformed
signal. Statistical tests such as a test for Gaussianity, a test
for linearity [17] and a test for aliasing [18] make use of the
higher-order spectra and provide useful tools for hypothesis
testing on signals with unknown statistics. An equivalent
definition of the moment spectrum in (1) is given in terms
of the Fourier transform of process realisations F(ω),

Mn
x (ω1, ...,ωn−1) = E{F∗(ω1 + ...+ωn−1)

n−1

∏
k=1

F(ωk)},

(3)
which is the correlation between the product of n − 1
Fourier components and the Fourier component at the cor-
responding sum frequency. This estimate of the higher-
order spectra is often used due to the simplicity and effi-
ciency of computation of the Fourier components using the
Fast Fourier Transform (FFT) algorithm. It also provides
intuition regarding the nature of the higher-order spectra
and assists in their interpretation. However, the sum fre-
quency in (3) is constrained and so there are only n−1 free
variables in the function, even though the nth order mo-
ment function is in general a function of n independent vari-
ables. This is because the definitions of the spectra in (1)
and (3) are the stationary moment spectra and are not ad-
equate for the analysis of non-stationary processes, though
they can be used for deterministic transient analysis. The
generalised expansion of higher-order spectra analysis to
the non-stationary case begins by expressing a continuous-
time random process using the Fourier-Stieltjes integral,

x(t) =
∫

∞

ω=−∞

e− jωtdF(ω), (4)

where dF(ω) is the spectral process which describes x(t).
Substituting (4) into (2) and performing some algebra one
attains that

mn
x(t,τ1, ...,τn−1) =∫

ω

...
∫

ωn−1

e− j(ω+...+ωn−1)te− j(ω1τ1+...+ωn−1τn−1)

.E{dF(ω)
n−1

∏
k=1

dF(ωk)}. (5)

Now define the variable ν as

ν = ω +
n−1

∑
k=1

ωk, (6)

which allows (5) to be rewritten as

mn
x(t,τ1, ...,τn−1) =∫

ω

...
∫

ωn−1

e− jνte− j(ω1τ1+...+ωn−1τn−1)

.E{dF∗(ν −
n−1

∑
k=1

ωk)
n−1

∏
k=1

dF(ωk)}. (7)



From (7) we see that the general moment function only be-
comes the stationary moment function for ν = 0, which
results in the constrained argument of the Fourier product
in (3). The implication is that in order for a random pro-
cess to be stationary its spectral process is required to have
orthogonal increments. Therefore, in general the Fourier
transform of the nth order moment function is itself an n-
dimensional function with the ν = 0 hyperplane being what
is referred to as the stationary manifold. The spectral pro-
cess of the non-stationary nth order moment function is thus
given as,

Mn
x (ω,ω1, ...,ωn−1)dω...dωn−1 =

E{dF∗(ν −
n−1

∑
k=1

ωk)
n−1

∏
k=1

dF(ωk)}, (8)

and any non-zero components on ν ̸= 0 are due to non-
stationarities in the process. The computation of stationary
moment spectra of a non-stationary process can yield inac-
curate or misleading results. The need for the full number
of dimensions in the spectral description is not uncommon.
For example, a spectrogram is often required in order to ob-
serve the time evolution of power decomposition onto fre-
quency and is the tool commonly used for pulsar analysis.
When dealing with complex processes the task of comput-
ing the higher-order spectra is less straight forward. For
example, knowledge of both the covariance and pseudo-
covariance functions of a complex process is required for
a full characterisation of the second-order statistics of the
process. The pseudo-covariance of a complex continuous-
time process is give as,

C∗
x (τ) = E{x(t)x(t − τ)} (9)

It differs from the standard covariance function only in
terms of the missing complex conjugation within the ex-
pectation operator. The issue of multiple moment function
definitions grows with the order of the statistic of interest.
For the nth order moment function of a complex process
there are 2n definitions depending on the number of com-
plex conjugations and their positioning. Fortunately the
concept of the circularity for complex distributions can be
extended to complex processes [19]; a circular process is
said to be proper and has non-zero moment functions only
for definitions with an equal number of conjugations and
non-conjugations in the product [4].

4 A Stationarity Test of the Data

The polyphase filterbank used to observe Vela spans the
frequency band from 856 MHz to 1712 MHz with 1024
channels. The sampling rate of the digitizer is 1712 MSPS
and the dump rate of the filterbank is approximately 0.8
microseconds. The filterbank data is separated into data
chunks corresponding to individual pulse outcomes. For
each phase of each outcome the second order polyspectrum
is computed using (3) but excluding the constraint of the
sum frequency. Finally, the polyspectral components are

normalised to attain the second order polycoherence func-
tion. The polyspectra estimates for each phase are averaged
over the pulse outcomes. Figure 3 shows the cyclic poly-
coherence of the Fourier component at 1367 MHz with a
second component at a Frequency deviation of ν . The av-
eraging only takes place over 50 pulse outcomes; it is ap-
parent that the non-stationary region quickly dies away to
zero while the stationary region is fully coherent. This trend
is observed over the full band of the filterbank and for all
phases, infering that the pulsar radio signal is second order
stationary over timespans of 0.8 microseconds.

Figure 3. The second-order polycoherence of the Vela fil-
terbank data centered around 1367 MHz.

Figure 4. The nomalised autocorrelation function and
pseudo-covariance function of the on-pulse Vela data.

A visual inspection of the distribution of the in-pulse sig-
nal over the complex plane shows no significant deviation
from a circular distribution, which is found to be the case
for all phases of the pulse cycle on the band of 1650 MHz.
The pseudo-correlation function in (9) is computed for the
on-pulse data in this band by means of a pulse-averaged
sliding window function which is averaged over 100 pulses.
The pseudo-covariance function is normalised to attain the
pseudo-coherence function. This function is unity for fully
coherent signals and zero for fully incoherent signals. The
result is shown in Figure 4 and is on the order of mag-
nitude of 10−3 which is a very strong indication of inco-
herence. The normalised autocorrelation function is also
shown where the large component at zero lag indicates that
the data contains features which are unresolved by the sam-
pling rate.



5 Conclusion

The higher-order spectra provide rich information on a sig-
nal under transformation and are fundamentally linked to
correlations of the spectral process. However, these spec-
tra are often only calculated over the subdomain known as
the stationary manifold and are less powerful than the full
polyspectra when analysing non-stationary signals. Addi-
tionally the computation of the spectra of complex pro-
cesses is made difficult through the existance of multiple
definitions. Pulsar radio signals are extraterrestrial tran-
sients which have been known to display non-Gaussian be-
haviour and fluctuations over short time scales. In this
work, an observation of the Vela pulsar has been performed
using the MeerKAT, the data has been tested for short-
time stationarity using the second order polyspectrum and
is found to be second order stationary over a time span of
0.8 microseconds. Additionally, the data is found to be cir-
cular, decreasing the number of definitions of its higher or-
der spectra. This new information allows for simpler and
better informed calculation of the higher-order spectra in
future work.
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