NenuFAR, a low frequency ground phased-array interferometer

Evangelia Tremou¹, Philippe Zarka¹, Michel Tagger², Cédric Viou³, Julien Girard¹, Jean-Mathias Grießmeier², Stéphane Corbel¹, Louis Bondonneau¹, Carine Briand¹, Fabienne Casoli¹, Baptiste Cecconi¹, Didier Charrier³, Andréé Coffre³, Ismaël Cognard², Richard Dallier³, Laurent Denis³, Chiara Ferrari⁶, Greg Hellbourg³, Alexander Konovalenko⁸, Leon Koopmans⁹, Alan Loh¹, Lilian Martin⁵, Florent Mertens⁴, Benoît Semelin⁴, Christophe Taffoureau³, Cyril Tasse¹⁰, Gilles Theureau⁵, Peter Tokarsky⁸, Oleg Ulyanov⁸, Rene Vermeulen¹¹, Vyacheslav Zakharenko⁸, Etienne Bonnassieux¹², Eoin Carley¹³, Valentin Decoene¹⁴, Antoine Gusdorf⁶, Laurent Lamy¹, Jean-Jacques Maintoux, Sophie Masson¹⁵, Mamta Pommier¹⁶, Mikhail Sidorchuk⁸, Serge Yerin⁸

(1) LESIA, Observatoire de Paris, France
(2) LPC2E, France
(3) Unité Scientifique de Nançay (USN), France
(4) LERMA, Observatoire de Paris, France
(5) Subatomic Physics and Associated Technologies Laboratory (Subatech), France
(6) Observatoire de la Côte d'Azur, France
(7) California Institute of Technology, USA
(8) Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Ukraine
(9) University of Groningen, the Netherlands
(10) GEPI, Observatoire de Paris, France
(11) ASTRON Radio Observatory, France
(12) University of Bologna, Italy
(13) Dublin Institute for Advanced Studies, Ireland
(14) Institut d'Astrophysique de Paris (IAP), France
(15) Laboratoire de Physique des Plasmas (LPP), France

NenuFAR (New Extension in Nançay Upgrading LOFAR) is a ground phased-array interferometer (low-frequency SKA pathfinder) located at Nançay Radioastronomy Observatory. It operates at 10-85 MHz frequency range. NenuFAR consists of 96 core phased-arrays (mini arrays) distributed within a 400 m diameter core, whereas 6 additional are distributed at distances up to ~3 km providing a very well sampled uv-coverage. Each mini array (MA) consists of 19 dual-pol dipoles allowing the operation of 4 distinct modes: as a standalone beamformer, a standalone imager, a waveform snapshots recorder, and a giant low-frequency station of the LOFAR array. Hence, the range of science cases with NenuFAR vary from follow-up of gravitational waves (GW) counterparts, solar systems (e.g. planets and exo-planets), cosmology (e.g. dark age), extra-galactic (e.g. Active Galactic Nucleus and their feedback in the medium) but also the violent universe through both slow and fast radio transients (e.g. fast radio bursts). NenuFAR serves as technology and science demonstrator for the SKA-low and here we present an overview of the new, large low-frequency radio telescope and discuss early science results.