The e-MERGE e-MERLIN/VLA/EVN wide-field deep radio survey of GOODS-N

Tom Muxlow*, (1), Ian Smail, (2), and Jack Radcliffe, (3)
(1) JBCA, University of Manchester, UK, MP13 9PL; e-mail: tom.muxlow@manchester.ac.uk
(2) Dept. of Physics, Durham University, UK, DH1 3LE; e-mail: ian.smail@durham.ac.uk
(3) Department of Physics, University of Pretoria, South Africa; email: jack.radcliffe@up.ac.za

The initial description paper for the e-MERGE deep (~1µJy/bm), narrow (30x30 arcmin² field) high-resolution (~1.5″→0.25″) radio survey of GOODS-N is now published [1]. Images are now available to the e-MERGE consortium from Data Release-1 (DR1) covering the inner central 15′x15′ arcmin.² region. This release involves a VLA 5.5GHz mosaic (~0.5″ beam, 1.5µJy/bm) + a VLA (42-hrs) + 25% of the deep e-MERLIN 1.5GHz data (108hrs, 4.5/18 days). The latest results from joint e-MERLIN+VLA 1.5GHz imaging are presented along with a short discussion of combination imaging with datasets with differing sensitivities, and a suite of combination images chosen for optimum science extraction. Issues covered include the point-spread function (PSF) of such datasets in combination imaging – and the problems encountered in flux measurements when such PSFs are significantly non-Gaussian. The e-MERGE results demonstrate the ability of high-resolution imaging at 1.5GHz to spatially resolve regions of radio emission associated with star-formation within the 848 DR1 catalogued radio sources out to z≥3 and differentiate such regions from those associated with actively accreting AGN-jet systems.

The DR2 enhancement is under way utilizing all the e-MERLIN+VLA 1.5GHz (unaveraged) data and imaging out to the full 30x30 arcmin² field of view, which will produce a single wide-field image to a depth of ~500nJy/bm in the inner 7.5 arcmin diameter field and ~1µJy/bm in the surrounding outer annulus – a factor of x4 increase in field size and x2 increase in depth in the inner region. Challenges include TB size datasets, combination images with 16Mpixels (4000x4000@45mas separation), deep (~0.5M) cleaning deconvolution cycles, and primary beam corrections in the presence of heterogeneous radio arrays with 25m, 32m, and 76m antennas – together with multiple weighting schemes. Image delivery is expected in 2022.

Additional 24-hrs of (associated) e-MERGE 1.5GHz data were observed with the EVN [2] providing mas-scale resolution at 582 correlation positions centered on e-MERLIN field, the vast majority of which lie within the DR1 area (central sensitivity ~9µJy/bm, bm-5mas.) Initial results for combination EVN+e-MERGE 1.5GHz imaging from a sample of 31 AGN-dominated radio sources are discussed with regard to the majority being compact core+galactic-scale) extended radio structures, possibly the high-redshift tail to the local Universe FR0-type radio structures [3], the most common form of radio AGN systems found in the Universe (Example: Figure 1 (Right)).

Figure 1. (Left) Diagram of e-MERGE survey area. (Right) DR1 1.5GHz image of 637µJy AGN system at z=3.44