First Morphological Results of the GPS L-band Amplitude Scintillation from Tarawa Equatorial Station
Sarvesh Kumar *, (1), Sushil Kumar (2)
School of Information Technology, Engineering, Mathematics and Physics
The University of the South Pacific, Suva, Fiji. https://www.usp.ac.fj/

Abstract

We present the first morphological results of the Global Positioning Systems (GPS) L1 and L2 band amplitude scintillation (S4 index) from Tarawa Equatorial Station (geog: 1.33°N, 173.01°E, geomag: 2.68°S, 114.26°W). The analysis period of September 2017 to November 2018 falls in the low solar activity period of solar cycle 24 (avg sunspot# = 11.6). The scintillation data were analyzed to study the diurnal variation, seasonal variation, geomagnetic dependence, and solar flare dependence of the S4 index. No daytime scintillations were observed during the entire study period on either of the bands. Nighttime scintillations had maximum occurrence during equinox months followed by summer and then winter. L2 band recordings showed an increased level of scintillation compared to the L1 band. Geomagnetic disturbances effect showed increased scintillation activities during the magnetically disturbed days compared to quiet days. Scintillations during geomagnetic storms were dominantly confined in the pre-midnight hours and finally, scintillations were found to be completely absent during solar flare events. Note: Some figures are not shown in this summary paper due to page limit.

1. Introduction

Satellite transionospheric communication is a heavily used method in the fields of navigation, military application, communication, and ionospheric research. The satellites of the Global Positioning System (GPS) constellation transmit at 3 different frequencies; L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176 MHz). As the signals propagate through the ionosphere, it undergoes scattering and rapid modification due to the small-scale structures in the ionosphere known as irregularities in a process called scintillation. Scintillation can be quantified by the S4 index which measures the fluctuations in the amplitude of the signals. Scintillation can be disastrous to GPS users causing problems such as larger positioning errors and loss of signal lock on the receivers.

The equatorial night-time scintillations occur due to generalized Rayleigh-Taylor instability (GRT instability) and Pre-Reversal Enhancement (PRE) [1-4] which creates Equatorial Plasma Bubbles (EPB) and ionospheric instabilities at the magnetic equator (known as Equatorial Spread F (ESF)) which forms under the F-region [5-8]. With sunset, the ionization energy also decreases and as a result, the electron density of the ionosphere becomes less. The decrease in E-region electron density and the interaction with the atmospheric neutral wind (i.e. the ion-neutral collision) generates an enhanced eastward electric field known as PRE on the dayside of the sunset and westward electric field on the night side of the sunset [9]. This causes a brief but intense uplifting of the plasma triggering a height increase in the ionosphere due to \(\text{E} \times \text{B} \) (equatorial fountain effect, EFE). The PRE disturbs the ionosphere and causes steep electron density gradients on the bottom side of the F-region [5] and as a result, a rapid GRT instability occurs[10]. GRT instability tries to bring the ionosphere back to equilibrium thus the regions of different densities start to move. The lower density region (or bubbles/EPBs) moves up through the ionosphere to settle on the topside. The instability starts as a large structure and gets divided into smaller cascade structures as they move through the ionosphere[9-11]. Once these structures reach the maximum height, they diffuse at locations off the magnetic equator around approximately ± 20° north and south to form the region which is known as the Equatorial Ionization Anomaly (EIA) [3, 11-13]. It is due to these structures along the different altitudes of the ionosphere which causes the L band scintillations. Daytime scintillations, however, have been attributed to E-region irregularities often referred to as Sporadic-E (Es) [14] (or Equatorial Sporadic-E (Esq)) which forms during the day and has a higher chance of forming just after sunrise with some assistance provided by the gravity waves [15-17].

There have been studies on the GPS L1 band scintillations in the Pacific Region [16, 18], however, from our literature review, no focus was made on the L2 band in this region. Additionally, these studies only focused on the crest of the EIA regions. In this study, we present the first results from Tarawa which is in the trough of the EIA region with a focus on both, the L1 and L2 band scintillation.

2. Method

The S4 data on GPS L1 and L2 bands were recorded using a Septentrio PolaRx5S receiver which was installed at The
S\textsubscript{4} is recorded by the receiver as the standard deviation of 50 Hz raw signal power normalized to the average signal power over a one-minute interval as S\textsubscript{total}. The receiver also outputs the correction due to thermal noise on S\textsubscript{total} as S\textsubscript{cor} thus the final S\textsubscript{4} which can be used for analysis is given by:

\[S_{4_{\text{final}}} = \sqrt{S_{4_{\text{total}}} - S_{4_{\text{cor}}}} \]

(1.0)

A classification of S\textsubscript{4} according to its strength used by Prasad et al. (2016) was adopted for this study to classify S\textsubscript{4} as very weak, weak, moderate, and strong.

<table>
<thead>
<tr>
<th>S\textsubscript{4} Strength</th>
<th>S\textsubscript{4} value (unitless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very weak</td>
<td>0.17 ≤ S\textsubscript{4} < 0.2</td>
</tr>
<tr>
<td>Weak</td>
<td>0.2 ≤ S\textsubscript{4} < 0.3</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.3 ≤ S\textsubscript{4} < 0.45</td>
</tr>
<tr>
<td>Strong</td>
<td>0.45 ≤ S\textsubscript{4}</td>
</tr>
</tbody>
</table>

All S\textsubscript{4} < 0.17 were regarded as noise.

The minute average of S\textsubscript{4_{final}} (from here on referred to as only S\textsubscript{4}) was calculated. To qualify as a scintillation, an event had to fall into one of the categories of Table 1.0 and should have lasted for at least 3 minutes. The S\textsubscript{4} with the largest value in 15-minute intervals was identified and using the above two criteria, the data from the station were analyzed using two variables- the number of scintillation events and the %occurrence of scintillation events. S\textsubscript{4} variations were then analyzed under different conditions such as diurnal, seasonal, annual, geomagnetic disturbance (using the international geomagnetic quiet and disturbed days), geomagnetic storms, and solar flare effects.

3. Results and Discussion

3.1 Diurnal, Seasonal and Annual Variation of Scintillation

Scintillation activity at Tarawa on both bands initiated after 18:00 LT and slowly increased until approx. 20:00 LT after which a very sharp increase in the percentage occurrence of S\textsubscript{4} index is seen reaching a max of 0.9% on L\textsubscript{1} and 1.7% on L\textsubscript{2} (Figure 1.0 a, b). These peaks appear at midnight after which the scintillation activity decreases. Scintillation on L\textsubscript{1} decreases more rapidly as compared to the L\textsubscript{2} band and reaches zero percent after approximately 2:00 LT. Scintillation activity at Tarawa was seen to be a total nighttime phenomena during this study period.

The occurrence of diurnal patterns of scintillation at our stations can be attributed to the development of F-region irregularities (equatorial spread F) forming after sunset due to PRE creating GRT instabilities [19, 20] which is responsible for the creation of equatorial plasma bubbles needed for scintillation to occur.

![Figure 1.0](image)

Figure 1.0: Diurnal annual average percentage occurrence of GPS (a) L\textsubscript{1} band and (b) L\textsubscript{2} band scintillations at Tarawa September 2017- November 2018.

To study the seasonal variation (figure not shown), S\textsubscript{4} data were grouped into Summer, Winter, and Equinox months. Scintillation in the equinox was the most dominant on both bands followed by summer and then winter. The most dominant category of scintillation was weak scintillations followed by very weak, moderate, and then strong. The L\textsubscript{2} band recorded 300% more events in summer and 290.2% more events in equinox as compared to the L\textsubscript{1} band.

Equatorial plasma bubbles and equatorial spread F occurrence have been directly correlated with the solar activity and shown to increase during equinoctial months [20]. Similarly, the large magnetic declination angle over the equatorial region, with good alignment between the sunset terminator and the magnetic meridian around the equinox months has also been attributed to the increased rate and strength of the L\textsubscript{1} band scintillations [20, 21].

In figure 2.0 (Figure not shown here) it is seen that the station recorded no daytime scintillation event throughout the recording period. The figure also shows that scintillation activity was dominantly a pre-midnight phenomenon throughout the year. Annually (Figure 3.0 a, b), the L\textsubscript{2} band signal showed 292.9% more scintillation events than the L\textsubscript{1} band signal. The L\textsubscript{2} band signal is also seen to be more susceptible to moderate and strong scintillation activities (S\textsubscript{4} = 0.30) as compared to the L\textsubscript{1} band signal since L\textsubscript{1} did not record any strong events (S\textsubscript{4} > 0.45).

The observation of increased scintillation on the lower frequency band at Tarawa is indicative of the frequency dependence relationship of S\textsubscript{4} i.e. S\textsubscript{4} \propto f^{-n} where n = 1.5 for S\textsubscript{4} < 0.6 and S\textsubscript{4} > 0.6, n decreases monotonically [22, 23].
These phases of the geomagnetic storm. However, it was earlier established that the disturbance was seen, however, it was unique to see that all storms with no daytime or post-midnight scintillation. Another observation was that scintillation during the main phase was relatively less (2 events) when compared to the initial and recovery phases of the storm (4 events each). These two observations are indicative of a strong dependence of scintillation on the PRE of the vertical electric field in the magnetic equator as it only occurs with sunset [24, 25], in our case, even during geomagnetic storms.

A similar analysis was also carried out for solar flares (table not shown). However, it was earlier established that the scintillation events at Tarawa were only a nighttime feature and since solar flares are mostly seen to produce ionospheric effects in the daytime, it was found that scintillation during the flares was completely absent.

4. Conclusion

The scintillation activity at the equator was found to be short-lived (approximately 6 hrs) and only occurred in the nighttime of the study period. Scintillation in the equinox was the most dominant with scintillation on the L1 band being dominant throughout the study period. A strong dependence of scintillation occurrence on geomagnetic disturbance was seen, however, it was unique to see that all geomagnetic storms only produced scintillation in the pre-midnight hours. No relationship was found between solar flares and scintillation activity. Generally, scintillation activity at Tarawa is suggested to be caused by equatorial spread F due to pre-reversal enhancement, development of ionospheric irregularities and equatorial plasma bubbles in the post-sunset hours.

5. References

