
3rd URSI AT-AP-RASC, Gran Canaria, 29 May – 3 June 2022

Time-Domain Science Pipelines for the OVRO-LWA

Yuping Huang*(1)(2), Mei-Ling Laures*(1)(2), Marin M. Anderson(3)(1)(2), Casey J. Law(1)(2), and Gregg Hallinan(1)(2)

(1) California Institute of Technology, Pasadena, CA 91125, USA
(2) Owens Valley Radio Observatory, Big Pine, CA 93513-0968, USA

(3) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Abstract

The Owens Valley Radio Observatory Long Wavelength
Array is a low radio frequency all-sky imaging radio inter-
ferometer. The full 352-element array will generate more
than 2 TB of visibility data per hour of observation. One
of the array’s primary science cases, the search for variable
radio emission from exoplanets and for transients, require
fast and high dynamic range interferometric imaging. Here
we detail the design and implementation of a two-pipeline
infrastructure that minimizes development cost: an offline
pipeline that facilitates experimentation with existing pack-
ages, and a real-time pipeline that minimizes overhead.

1 Introduction

Modern radio interferometric arrays produce vast amounts
of data. Progress in the last decade in calibration and
imaging algorithms has enabled higher dynamic range and
wider field of view, especially at low radio frequencies (<
400 MHz). Given the large space of available algorithms,
data processing pipeline infrastructures that facilitate exper-
imentation and rapid deployment at scale are key to maxi-
mizing the scientific potential of telescope arrays. After the
correct software and algorithm solutions are identified, a
real-time pipeline integrating these components can drasti-
cally increase the scientific output of a telescope.

This paper details the data processing pipeline design and
implementation for the time-domain science for the Owens
Valley Radio Observatory Long Wavelength Array (OVRO-
LWA), an interferometric array at Caltech’s Owens Valley
Radio Observatory (OVRO) near Big Pine, CA. OVRO-
LWA serves as a software demonstrator for the radio cam-
era concept1, where a streaming pipeline produces science-
ready images without the need for visibility-based decon-
volution. We summarize the background and requirements
for the project in § 2, describe our offline and real-time
pipelines respectively in § 3 and § 4, and conclude in § 5.

2 Design Considerations

The OVRO-LWA is currently going through its final stage
(Stage III) of upgrade funded by NSF MSRI. The upgrade

1https://www.radiocamera.io/

Figure 1. A 13 s snapshot image with the Stage II OVRO-
LWA. There are more than a thousand stellar systems within
25 pc that are monitored simultaneously within the field of
view

will increase the number of antennas from 288 to 352, span-
ning a maximum baseline length of 2.4 km, and feature re-
designed analog, digital, and compute backends. For all
stages of the array, the correlator produces full cross cor-
relations across all baselines every 10 s and thus enjoys an
all-sky field of view. The observing frequencies span from
12 MHz to 85 MHz with the band below 25 MHz usable
at night only. The angular resolution at 25 MHz is ∼ 15′.
With 352 antennas and 2944 frequency channels across the
band, the OVRO-LWA will produce 2 TB of visibility data
per hour.

Data processing for the OVRO-LWA takes place on a ded-
icated compute and storage cluster housed near the tele-
scope and connected to the correlator via a dedicated Eth-
ernet switch. Currently, a small compute cluster with 10
compute nodes runs the data reduction. Each compute
node possesses 16 CPU cores and 64 GB of RAM. These
compute nodes share a Lustre2 distributed storage system
with 5 Object Storage Servers (OSSs) and 1 Management
Server (MGS), totaling 560 TB of usable space. The shared
Lustre file system significantly simplifies the pipeline de-

2https://www.lustre.org/



sign because the pipeline sees a unified file system. The
planned Stage III upgrade will expand the cluster: the new
cluster will consist of 11 compute nodes, each with 48 CPU
cores, 512 GB of RAM, and the ability to accommodate
GPUs; 9 storage nodes will form the Lustre storage clus-
ter with 4.3 PB of usable space. Benchmarking on the cur-
rent compute and storage system informed the parameters
of the upgraded cluster.

Time-domain science with the OVRO-LWA includes all-
sky searches for transients and emission from exoplanetary
magnetospheres (Fig. 1). Theorized transients at low radio
frequencies include stellar radio bursts that may trace the
plasma environments around stars, and prompt counterpart
to binary neutron star mergers. Bright radio emission has
been observed from all magnetized planets in the solar sys-
tem and is one of the most promising means of detecting
magnetospheres of planets outside our solar system. Char-
acteristics of planetary magnetospheric radio emissions in-
clude high variability and high degree of circular polariza-
tion. A competitive time-domain survey for transients and
exoplanetary emission requires thermal noise limited, time
resolved, and all sky imaging between timescales of sec-
onds to hours in Stokes I (for transients) and in Stokes V
(for exoplanets). The baseline requirement for the Stage III
array is to process a 1000-hour survey offline within rea-
sonable time, with a stretch goal of real-time operations.
We are developing two different pipeline infrastructures to
satisfy these requirements while minimizing overall devel-
opment cost:

1. A distributed, file-based, offline processing framework
(detailed in § 3) allows for rapid experimentation and
iteration with existing software packages that oper-
ate on measurement sets3. The offline framework
will help us identify the appropriate combination of
software packages and algorithms that balance perfor-
mance and dynamic range requirements.

2. A planned real-time pipeline framework (detailed in
§ 4) will incorporate algorithms and software pack-
ages validated via the offline pipeline and minimize
overhead by passing data in-memory between process-
ing steps. Some parts of the sky are computationally
cheaper to process than others due to the absence of
bright sources. The real-time pipeline is a focused ef-
fort to achieve real-time time-domain science for as
much of the sky as possible.

3 Offline Pipeline: From Prototype to Pro-
duction

The current processing infrastructure for the OVRO-LWA
exoplanet and transient science is an offline pipeline.4 The
goal of the offline pipeline is to reduce the friction between

3https://casacore.github.io/casacore-notes/229.html
4Hosted at https://github.com/ovro-lwa/distributed-pipeline

Figure 2. An illustration for the distributed queue-backed
pipeline based on Celery.

experimentation on a small set of data and batched process-
ing on a distributed cluster on a large amount of data. It
leverages existing software packages and input/output con-
ventions. We opted to build a pipeline framework based
on Python packages, as opposed to using a general-purpose
task scheduler like Slurm5, because the cluster has a dedi-
cated purpose and a relatively small number of users. The
added structure of Python scripts also allows users to share
and reuse pipeline scripts with ease. This infrastructure
was used for a recent transient survey with the OVRO-LWA
[1], reusing algorithms developed in previous work [2] and
other existing radio interferometry calibration and imaging
packages.

The pipeline infrastructure consists of three layers:

1. The top execution layer should be an off-the-shelf
package within the Python ecosystem that schedules
and executes tasks across the cluster. The choice of the
execution layer may change as the scale of the project
evolves.

2. A middle “adapter” layer bridges between the top exe-
cution layer and the bottom functional interface layer,
typically converting types or filling in necessary meta-
data for the execution layer. This layer should be thin
and decoupled from the other layers, so that switching
the execution engine requires less effort. Currently, the
adapter layer takes the form of a functional decorator.

3. We stipulate that the bottom layer consists of Python
functional interfaces to routines that do work on a
minimal unit of input (often a measurement set with
a single time integration). The routine can be a na-
tive Python function, a wrapper function to code writ-
ten in a different language, or a subprocess call to
a compiled program with a command-line interface.
Each function must take a path to the input file and re-
turns the path to the output. Each function thus reads

5https://slurm.schedmd.com/



from and writes to files, because files are the com-
mon input/output of existing packages. A user can use
these functions for exploratory analyses in an interac-
tive Python shell or a notebook, and tune parameters
accordingly in preparation for batched processing with
the pipeline.

Decoupling the execution layer from the processing layer
allows us to iterate on both processing algorithm and exe-
cution framework quickly. The current distributed execu-
tion layer is Celery,6 a Python distributed task processing
framework. The pipeline code puts tasks in queues (backed
by RabbitMQ7) through Celery, and each idle worker pro-
cess on every node of the cluster picks up tasks from the
queues (Fig. 2). We find Celery well matched to our
needs with its simplicity, native Python support, tolerance
to power outage, and monitoring capability. Celery allows
a user to specify a pipeline’s steps and input/output with
straightforward Python semantics. For example, the fol-
lowing code snippet asks the pipeline to chain the output of
the first task to the input of the second task and apply the
chain of tasks to all elements in ms_list:

for ms in ms_list:
(task_1.s(ms, par_1) | task_2.s(par_2))()

The non-blocking .s() method call queues the task. The
pipe operation (|) is a shorthand for specifying a chain of
tasks, where the output of the first task serves as the input
for the second task. Since Celery sends all the requisite
tasks to the task queue to be executed by the cluster, the
user does not have to manage the execution in the pipeline
code. The above snippet can be shortened with list compre-
hension and Celery’s group class. Specifying the pipeline
processing in Python allows pipeline-level code reuse via
converting pipeline code into a parameterized function. It
also allows pipeline mock testing, which ensures that each
step in the pipeline receives the correct input. One can also
build higher-level abstractions (with configuration files or
the Common Workflow Language8) on top of the pipeline
execution code. A PathManager class indexes spectral
windows, observing time, and file types to file paths on
the shared file system. PathManager enforces consistent
file-naming conventions across the project. New naming
schemes can be added by subclassing PathManager and
pipeline code can be reused with new file naming schemes
by switching to the new subclass.

The file-based framework with extensive code reuse accel-
erates deployment for batched processing after prototyping
on a small set of data. However, it becomes inefficient for
tasks with high file I/O to compute ratios. To mitigate the
issue, we merge tasks with high file I/O to compute ratios
with an adjacent step so that the Linux buffer cache can
significantly speed up file I/O.

6https://docs.celeryproject.org/
7https://www.rabbitmq.com/
8https://www.commonwl.org/

4 Real-time Pipeline

Although offline pipelines may offer flexibility, they typ-
ically make heavy use of disk-backed data, where read-
ing and writing is an order of magnitude slower than data
kept in cache and RAM. A real-time pipeline that keeps
intermediate data products in RAM will be vastly more ef-
ficient. This section starts with a comparison of the old
and new memory management paradigms; we will then de-
scribe how the new Memory Lender framework will work
in the Recycling library, and its planned usage with the
OVRO-LWA.

4.1 Memory Alternatives and Comparison

Before deciding on a new framework, we undertook an in-
depth exploration of Bifrost [3]. Bifrost, as well as
HASHPIPE9 and PSRDADA [4], uses a ring-buffer system.
Memory buffers are instantiated before starting operational
steps and placed between them, such that the steps can
write to and read from the buffers to move data along the
pipeline. Bifrost pre-allocates multiple buffers between
steps to minimize run-time latency.

The Bifrost exploration consisted of a prototype pipeline
with 2 different ring buffers: a buffer for visibilities from a
measurement set and one for visibilities after flagging and
calibration. The size and shape of these buffers were iden-
tical, containing all polarizations and as many channels as
possible within one time integration. Through this we dis-
covered two drawbacks of using ring buffers for memory.
The first applies to when data is moved from one buffer
to another. When an operational step moves modified data
of the same shape from one ring buffer to the next, this is
less efficient than in-place modification. The second con-
cern with using ring buffers are challenges associated with
multi-threading: lock contention and memory ownership.
With multiple blocks, each with at least one thread, read-
ing from and writing to the same ring buffer, there will in-
evitably be lock contention. This will lead to slowdowns as
both the reading/writing threads wait for the other to finish
with the ring buffer.

The new concept for memory storage is a memory lender
containing buffers for all data and metadata types, with an
API that allows users to call for the sizes and data types
needed through a unified call to the memory lender. The
API will return a pointer to a physical location in mem-
ory of a certain size. By giving the pointer, the framework
encourages in-place modification for data refinement steps
instead of movement between buffers. This method also
lends itself well to singular memory ownership, encourag-
ing only one thread to do all write operations on the buffer
- useful to ward off headaches in a multi-threaded environ-
ment. This custom method improves upon the pitfalls that
are present in the ring buffer framework.

9https://casper.astro.berkeley.edu/wiki/HASHPIPE



4.2 Memory Lender Features

The lender is written in C++, a low-level language with
custom memory management that has pre-existing software
packages that are widely used by the radio astronomy com-
munity. As the framework is based on a new idea for a
memory paradigm, the custom memory management that
C++ allows for is necessary, even though this makes it
riskier for the user. C++ can also be used for GPU code,
allowing for easier communication between the framework
and the software steps it would be linking together.

The memory lender is initialized with a user-configured
number of all types and sizes of memory needed, before
the execution of the pipeline begins. This will be all the
lender-managed memory that is available in the lifetime of
the pipeline. This memory is split into data buffers that the
user is allowed to fill with new data. During execution, the
user calls a lender function, specifying the type of memory
that is needed, which is returned from the lender buffers.
The lender also provides functionality for the user to keep
a list of "filled" buffers: the operate list. These are buffers
that have been filled with received or calculated data, but
are yet to be consumed by the pipeline. There is, however,
only one of these lists available for each type of data to en-
courage the batching of data modifications.

All buffers from the memory lender framework are man-
aged memory, meaning that users do not need to make or
destroy the memory. The buffer keeps track of its own num-
ber of references with the shared_ptr object from the C++
standard library. Each time a copy of the buffer is passed
to another thread or given to the operate list, the reference
count is incremented. When the buffer goes go out of scope,
the reference is decremented. When the reference count
reaches zero, the buffer object will pass the memory back
to the memory lender as "free" memory, without the need
for user intervention.

When using pipeline memory in other software packages,
the user might need the raw pointer to the managed mem-
ory. The raw pointer should be used expressly for the pur-
pose of converting buffer memory into other objects for use
in radio astronomy software. Using raw pointers in this way
will be safe for the user as long as the buffer/raw pointer
object go out of scope at the same time. This avoids the
memory being freed by the buffer while its still in use by
the raw pointer and its object. Calls to functions in exter-
nal packages should block within each thread so that the
shared_ptr does not go out of scope before the external
function call terminates.

As the framework and system of memory is new, there will
be a debugging mode with two features for all users to en-
sure that they correctly are managing and using the buffers.
First, the debugging mode will be zeroing and filling of all
data buffers at initialization and free. This will allow the
user to catch the use-after-free bug, and understand the life

cycle of buffers. Second, the debugging mode will provide
the memory lender the set of its own buffer pointers. The
lender will then refuse any user-made buffers.

4.3 Pipeline and Orchestration

The real-time data reduction pipeline will be built using this
framework to link together different software developed by
the community that suit the purpose of reducing the visi-
bilities to image form. The pipeline will receive visibili-
ties, flag them and apply calibration solutions. The cali-
bration solutions will be calculated during the execution of
the pipeline as well. The calibrated visibilities will then be
put through gridding, imaging, and reprojection. The final
product of the pipeline includes a HEALPix [5] image for
exoplanet science, a measurement set containing the cali-
brated visibilities, and the calibration solutions and flags.
The output measurement sets can be used for other science
cases.

Around half of the operations will be done using commu-
nity software. One planned use is of Image Domain Grid-
ding (IDG) [6, 7]. As the memory framework and pipeline
is within the CPU, this software will copy said memory to
the GPU before gridding and applying an FFT. This image
will be reprojected into HEALPix, with custom software.
Another planned software use is CASA [8] for applying cali-
bration. casacore10 will also be used to write to measure-
ment sets.

The memory lender is used in the same threads as the
pipeline operations. There will be a thread to listen and
receive visibilities to put into the operate list provided by
the framework. A function to flag and apply calibrations to
the visibilities will be run by multiple threads to parallelize
processing of buffers. These flag/application threads will
give copies of data - modified visibilities, flag masks, cali-
bration solutions - to different threads to write to disk. The
final steps of the pipeline, being gridding, imaging and re-
projection, are run by one thread per pixel grid. The thread
will own the pixel grid memory and form it into a final
HEALPix image.

5 Conclusion and Future Work

We describe the design and implementations of the time-
domain science data processing pipelines for the OVRO-
LWA. Given the need to experiment with different existing
software and parameters and the need for performance, we
pursued a two-pipeline approach that prioritizes using ex-
isting software packages and minimizes development cost.
The offline pipeline is operational, with a load-balancing
feature planned using multiple task queues. Implementa-
tion of the real-time infrastructure and integration with ex-
isting software packages are in progress.

10https://github.com/casacore/casacore



6 Acknowledgements

This material is based in part upon work supported by
the National Science Foundation under Grant Nos. AST-
1654815, AST-1212226, and AST-1828784. This work
was supported by a grant from the Simons Foundation
(668346, JPG). We are grateful to Schmidt Futures for sup-
porting the Radio Camera Initiative, under which part of
this work was carried out. The OVRO-LWA project was
initiated through the kind donation of Deborah Castleman
and Harold Rosen. Y.H. thanks the LSSTC Data Science
Fellowship Program, which is funded by LSSTC, NSF Cy-
bertraining Grant #1829740, the Brinson Foundation, and
the Moore Foundation; his participation in the program has
benefited this work.

References

[1] Huang, Y. et al., “A Matched Survey for the
Enigmatic Low Radio Frequency Transient ILT
J225347+862146,” The Astrophysical Journal, in
press, 2022, arxiv:2112.03301.

[2] Anderson, M. M. et al., “New Limits on the Low-
frequency Radio Transient Sky Using 31 hr of All-sky
Data with the OVRO-LWA,” The Astrophysical Jour-
nal, 886, 2, 2019, doi:10.3847/1538-4357/ab4f87.

[3] Cranmer, M. D. et al., “Bifrost: A Python/C++ Frame-
work for High-Throughput Stream Processing in As-
tronomy,” Journal of Astronomical Instrumentation,
6, 4, 2017, doi:10.1142/S2251171717500076.

[4] van Straten, W., Jameson, A., and Osłowski, S., “PSR-
DADA: Distributed Acquisition and Data Analysis
for Radio Astronomy,” Astrophysics Source Code Li-
brary, 2021, ascl:2110.003.

[5] Górski, K. M. et al., “HEALPix: A Framework for
High-Resolution Discretization and Fast Analysis of
Data Distributed on the Sphere,” The Astrophysical
Journal, 622, 2, 2005, doi:10.1086/427976.

[6] van der Tol, S., Veenboer, B., and Offringa, A.
R., “Image Domain Gridding: a fast method for
convolutional resampling of visibilities,” Astronomy
and Astrophysics, 616, 2018, doi:10.1051/0004-
6361/201832858.

[7] Veenboer, B. and Romein, J. W., “Radio-
astronomical imaging on graphics proces-
sors,” Astronomy and Computing, 32, 2020,
doi:10.1016/j.ascom.2020.100386.

[8] McMullin, J. P., Waters, B., Schiebel, D., Young,
W., and Golap, K., “CASA Architecture and Appli-
cations”, in Astronomical Data Analysis Software and
Systems XVI, 376, 2007.


