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Abstract:- In this paper two new highly efficient hybrid lossless audio coding techniques based on the 

Burrows-Wheeler Transform (BWT) and the distance transform (DT) are presented. In both 

techniques, floating point samples of the audio signal are first applied to the BWT and the resulting 

coefficients are then applied to the DT to obtain more suitable coefficients for the next step of lossless 

compression. In the first proposed method, two entropy-based lossless compression methods are 

considered, namely Arithmetic coding and Huffman coding. On the other hand, in the second 

proposed method the entropy coding is first preceded by Run Length Encoding (RLE). 
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1. INTRODUCTION 

    The MPEG-4 Audio Lossless Coding (ALS) standard belongs to the family MPEG-4 audio 

coding standards [1] and [2].  Audio Lossless Coding (ALS) provides methods for lossless coding of 

audio signals with arbitrary sampling rates, resolutions of up to 32-bit and up to 216 channels. 

          Lossless audio coding enables the compression of digital audio data without any loss in quality 

due to a perfect reconstruction of the original signal. On the other hand, modern perceptual audio 

coding standards are always lossy, since they never fully preserve the original audio data. Those lossy 

coding methods are typically not well suited for certain applications such as editing or archiving.   

          This paper introduced a new lossless audio coding schemes using the BWT of the input audio 

stream and the distance transform to convert the resulting coefficients to a form that can be better 

compressed then the resulting coefficients are compressed using two methods, the first method is 

using entropy coding only and the second method is using a combination of the run length encoding 

and entropy coding.  

 The paper is organized as follows. Section 2 presents the burrows wheeler transform. Section 

3 describes distance transform and section 4 describes the run length encoding. Section 5 shows the 

simulation results. Finally, Section 6 concludes the paper. 

 In [3], audio signals that are assumed to be of integer values are used for lossless audio coding 

using two methods. The first method is the compression using Burrows-Wheeler Transform only and 

this method called Method1. The second method is using the combined Burrows-Wheeler Transform 

and Move-to-Front Coding and this method called Method2.  

Lossless audio coding technique assumed the audio signal is floating point values is made 

using Burrows-Wheeler Transform and run length encoding, this method called Method3[4] and a 

combination of Move-to-Front Coding and run length encoding and this method called Method4 [5] . 

 Burrows-Wheeler Transform and combination of Distance Transform Coding, and run length 

encoding are made for lossless text compression [6] and [7], for lossless strings compression [8], and 

for lossless image compression [9]. 

 

2. BURROWS WHEELER TRANSFORM  
 The Burrows-Wheeler Transform (BWT) is a reversible block sorting transform.  

Example, the BWT of the samples X ={1, 2, 4, 6, -1, 3, 2, -4, 6, -7}is given in Table I [3] Considering 

last column and the fourth row of Table I(b), then BWT{1, 2, 4, 6, -1, 3, 2, -4, 6, -7}= ({ 6, 2, 6, -7, 3, 

1, - 1, 2, -4, 4}, 4). 

An example for this inverse BWT is found in appendix. The procedures for this IBWT table 

construction are found in [5].   

Then the IBWT({ 6, 2, 6, -7, 3, 1, - 1, 2, -4, 4}, 4 )={1, 2, 4, 6, -1, 3, 2, -4, 6, -7}. 

 



3. DISTANCE TRANSFORM 

 Distance transform (DT) can be used in this paper for preprocessing the Burrows- Wheeler 

transformed sequence before it is fed to the actual compressor instead of move to front coding. are an 

important tool in image compression [10] and the used matlab function for this distance transform is 

found in [11] . 

Example, the distance transform coding of the samples y={6, 2, 6, -7, 3, 1, - 1, 2, -4, 4} is{2 -3 -6 -7 -

6 -3 -1 -3 -4 -3}.  

 

4. RUN LENGTH ENCODING 

 The run-length encoding (RLE) can be used to reduce the number of runs in a data.  

Example, the one-dimensional sequence pixels of input data {2, 2, 2, 4, 4, 4, 4, 4, 9, 9, 9, 9, 9, 9, 4, 4, 

4, 4, 4, 4}, the pixel “2” has repeated with 3 times, the pixel “4” has 5 repetitions, and the pixel “9” 

has 6 repetitions, and the pixel “4” has 6 repetitions, the values can represented as {2, 3, 4, 5, 9, 6, 4, 

6}[5].  

 

5. SIMULATION RESULTS 

In this paper, six different audio signals have been used for lossless audio coding using the 

proposed two methods. The six audio signals are Signal1, Signal2, Signal3, Signal4, Signal5 and 

Signal6 each of length is 2.32 sec, sampled at 44.1 KHz sampling rate with 16 bits floating point have 

been considered in this simulation.  

 Audio signals are divided into frames each of length 23.2 msec (1024 samples). Lossless 

coding is implemented using Arithmetic and Huffman coding and compared to the entropy of the 

signal to get the output bit rate in bits per sample (bps). 

           Figure 1 shows the output bit rate in bps for different audio signals and the average bit rates 

using the first proposed method for sampling rate 44.1 kHz. From this, we show that the bit rate 

depends on the signal type and the type of lossless coding using entropy, Huffman, and Arithmetic 

coding. The bit rate for Arithmetic coding is less than Huffman coding. Then Arithmetic coding is 

better than Huffman coding. 

 Figure 2 shows the output bit rate in bps for different audio signals and the average bit rates 

using the first proposed method for sampling rate 32 kHz. From this, we show that the bit rate depends 

on the signal type and the type of lossless coding using entropy, Huffman, and Arithmetic coding. The 

bit rate for Arithmetic coding is less than Huffman coding. Then Arithmetic coding is better than 

Huffman coding. 

 Figure 3 shows the output bit rate in bps for different audio signals and the average bit rates 

using the first proposed method for sampling rate 48 kHz. From this, we show that the bit rate depends 

on the signal type and the type of lossless coding using entropy, Huffman, and Arithmetic coding. The 

bit rate for Arithmetic coding is less than Huffman coding. Then Arithmetic coding is better than 

Huffman coding. 

 Figure 4 shows the average bit rate for the three different sampling rates 32, 44.1, and 48 KHz 

using the first proposed method and 23.2 msec frame lengths. From this figure, we show the bit rate 

depends on the sampling rate; the bit rate for the 44.1 KHz is less than 32 and 48, then it is better than 

32 and 48. 

 Then the audio signals are divided into frames each of length 11.6 msec (512 samples) and 

applying the first proposed method for compression, figure 5 shows the output bit rate in bps for 

different audio signals and the average bit rates using the first proposed method for sampling rate 44.1 

kHz. From this, we show that the bit rate depends on the signal type and the type of lossless coding 

using entropy, Huffman, and Arithmetic coding. The bit rate for Huffman coding is less than 

Arithmetic coding. Then Huffman coding is better than Arithmetic coding. 

 Then the audio signals are divided into frames each of length 46.4 msec (2048 samples) and 

applying the first proposed method for compression, figure 6 shows the output bit rate in bps for 

different audio signals and the average bit rates using the first proposed method for sampling rate 44.1 

kHz. From this, we show that the bit rate depends on the signal type and the type of lossless coding 

using entropy, Huffman, and Arithmetic coding. The bit rate for Arithmetic coding is less than 

Huffman coding. Then Arithmetic coding is better than Huffman coding. 



 Figure 7 shows the average bit rate for the three different frame lengths in msec 11.6, 23.2, 

and 46.4 using the first proposed method and 44.1KHz sampling rate. From this figure, we show the 

bit rate depends on the frame length; the bit rate for the 11.6 msec is less than 23.2 and 46.4 msec, 

then it is better than 23.2 and 46.4 msec. 

           Figure 8 shows the output bit rate in bps for different audio signals and the average bit rates 

using the second proposed method for sampling rate 44.1 kHz. From this, we show that the bit rate 

depends on the signal type and the type of lossless coding using entropy, Huffman, and Arithmetic 

coding. The bit rate for Arithmetic coding is less than Huffman coding. Then Arithmetic coding is 

better than Huffman coding. 

 Figure 9 shows the output bit rate in bps for different audio signals and the average bit rates 

using the second proposed method for sampling rate 32 kHz. From this, we show that the bit rate 

depends on the signal type and the type of lossless coding using entropy, Huffman, and Arithmetic 

coding. The bit rate for Arithmetic coding is less than Huffman coding. Then Arithmetic coding is 

better than Huffman coding. 

 Figure 10 shows the output bit rate in bps for different audio signals and the average bit rates 

using the second proposed method for sampling rate 48 kHz. From this, we show that the bit rate 

depends on the signal type and the type of lossless coding using entropy, Huffman, and Arithmetic 

coding. The bit rate for Arithmetic coding is less than Huffman coding. Then Arithmetic coding is 

better than Huffman coding. 

 Figure 11 shows the average bit rate for the three different sampling rates 32, 44.1, and 48 

KHz using the second proposed method and 23.2 msec frame lengths. From this figure, we show the 

bit rate depends on the sampling rate; the bit rate for the 44.1 KHz is less than 32 and 48, then it is 

better than 32 and 48. 

 Then the audio signals are divided into frames each of length 11.6 msec (512 samples) and 

applying the second proposed method for compression, figure 12 shows the output bit rate in bps for 

different audio signals and the average bit rates using the second proposed method for sampling rate 

44.1 kHz. From this, we show that the bit rate depends on the signal type and the type of lossless 

coding using entropy, Huffman, and Arithmetic coding. The bit rate for Huffman coding is less than 

Arithmetic coding. Then Huffman coding is better than Arithmetic coding. 

 Then the audio signals are divided into frames each of length 46.4 msec (2048 samples) and 

applying the second proposed method for compression, figure 13 shows the output bit rate in bps for 

different audio signals and the average bit rates using the second proposed method for sampling rate 

44.1 kHz. From this, we show that the bit rate depends on the signal type and the type of lossless 

coding using entropy, Huffman, and Arithmetic coding. The bit rate for Arithmetic coding is less than 

Huffman coding. Then Arithmetic coding is better than Huffman coding. 

 Figure 14 shows the average bit rate for the three different frame lengths in msec 11.6, 23.2, 

and 46.4 using the first proposed method and 44.1 KHz sampling rate. From this figure, we show the 

bit rate depends on the frame length; the bit rate for the 11.6 msec is less than 23.2 and 46.4 msec, 

then it is better than 23.2 and 46.4 msec. 

 Figure 15 shows the comparison between the Average bit rate using sampling rate of 44.1kHz 

and frame length of 23.2 msec for the different methods; Method1, Method2, Method3, Method4, 

Proposed Method1, and Proposed Method2. 

 
Fig. 1: Bit rate using the first proposed method for different audio signals and Fs=44.1 kHz. 



 
Fig. 2: Bit rate using the first proposed method for different audio signals, Fs=32 kHz. 

 
Fig. 3: Bit rate using the first proposed method for different audio signals, Fs=48 kHz. 

Fig. 4: Average bit rate for the first proposed method using different sampling rates. 

 
Fig. 5: Bit rate using the first proposed method for different audio signals, Fs=44.1 kHz and L=512. 

 
Fig. 6: Bit rate using the proposed method for different audio signals Fs=44.1 kHz and L=2048. 



Fig. 7: Average bit rate for the first proposed method and different frame lengths in msec. 

 
Fig. 8: Bit rate using the second proposed method for different audio signals and Fs=44.1 kHz. 

 
Fig. 9: Bit rate using the second proposed method for different audio signals, Fs=32 kHz. 

 
Fig. 10: Bit rate using the second proposed method for different audio signals, Fs=48 kHz. 



 
Fig. 11: Average bit rate for the second proposed method using different sampling rates. 

 
Fig. 12: Bit rate using the second proposed method for different audio signals, Fs=44.1 kHz and 

L=512. 

 
Fig. 13: Bit rate using the second proposed method for different audio signals Fs=44.1 kHz and 

L=2048. 

 
Fig. 14: Average bit rate for the second proposed method and different frame lengths in msec. 



 
               Fig. 15: Comparison between the Average bit rate for the different methods. 

 

6. CONCLUSION 

Simulation results show that the two proposed lossless audio coding methods outperform other 

lossless audio coding methods. In particular the performance of the proposed techniques was compares 

with other four methods. The first one called Method1 uses the BWT transform alone. The second 

one, called Method2, uses a combination of the BWT Transform and the Move-to-Front coding 

(MTF). The third technique, called Method 3, uses a combination of the BWT transform and RLE. 

The fourth one, called Method 4, uses the BWT Transform and a combination of MTF and RLE. 
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