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Abstract

Inverse synthetic aperture radar (ISAR) images generated
from single-channel automotive radar data provide critical
information about the shape and size of automotive tar-
gets. However, the quality of ISAR images degrades due
to road clutter and when translational and higher order ro-
tational motions of the targets are not suitably compensated.
One method to enhance the signal-to-clutter-and-noise ratio
(SCNR) of the systems is to leverage the advantages of the
multiple-input-multiple-output (MIMO) framework avail-
able in commercial automotive radars to generate MIMO-
ISAR images. While substantial research has been devoted
to motion compensation of single-channel ISAR images,
the effectiveness of these methods for MIMO-ISAR has not
been studied extensively. This paper analyzes the perfor-
mance of three popular motion compensation techniques -
entropy minimization, cross-correlation, and phase gradi-
ent autofocus - on MIMO-ISAR. The algorithms are evalu-
ated on the measurement data collected using Texas Instru-
ments millimeter-wave MIMO radar. The results indicate
that the cross-correlation MOCOMP performs better than
the other two MOCOMP algorithms in the MIMO configu-
ration, with an overall improvement of 36%.

1 Introduction

Automotive radars play a vital role in advanced driver as-
sistance systems (ADAS) to enable road safety and avoid
road congestion [1]. Wideband millimeter-wave (mmW)
automotive radars are specifically useful for detecting and
identifying different road users based on high-resolution
images. Recent advances in inverse synthetic aperture radar
(ISAR) imaging of automotive vehicles generated from sin-
gle channel radar data have utilized the wide-angle per-
spectives from turning vehicles to capture images of bikes,
cars, buses, and trucks [2]. These ISAR images provide de-
tailed information about each target’s structure, including
its shape, size, number of wheels, and trajectory [3]. How-
ever, the image quality is affected by radar receiver noise,
environmental/road clutter, and errors in the ego vehicle’s
estimation of its kinematic parameters.

Multiple-input-multiple-output (MIMO) radar systems
have been extensively researched as a method for boosting
signal-to-clutter-and-noise ratio (SCNR) and enhancing the
radar operating metrics [4]. In a MIMO radar configuration,
the multiple radar antennas at the transmitter and receiver
may be widely separated in space (multistatic) or co-located
(monostatic). In the monostatic configuration, it is possible
to precisely phase synchronize the transmitter and receiver
antennas and create a virtual array with a large electrical

aperture for generating directional beams with fewer ele-
ments [5]. Several commercial millimeter wave automotive
radars support MIMO configurations for different applica-
tions. This work employs a monostatic MIMO automotive
radar configuration with time-domain multiplexed (TDM)
mode for MIMO, where each transmitting element is acti-
vated sequentially through a controlled switching mecha-
nism, to generate high-resolution MIMO-ISAR images of
automotive targets.

A significant challenge in achieving good quality high-
resolution ISAR images is managing the complex motion
dynamics of maneuvering automotive targets. These dy-
namics include translational motion, such as velocity, ac-
celeration, and jerk, and rotational motion, such as yaw,
roll, and pitch. These motion parameters are generally un-
known to the radar engineer and distort and blur the radar
images. To address these challenges, motion compensation
(MOCOMP) has been extensively explored in ISAR litera-
ture [6, 7]. MOCOMP involves estimating the translational
and higher-order rotational motion parameters and correct-
ing for their undesired effects on ISAR images. Gener-
ally, ISAR imaging involves multiple stages of MOCOMP.
The first step generally involves coarse MOCOMP to mit-
igate the range walk phenomena by phase-correcting for
the change in target position across different frames in the
raw data [8]. The migration of scatterers across different
range cells during the coherent integration time results in
Doppler shifts spanning multiple cells. The second stage
of MOCAMP involves making these Doppler shifts con-
stant across the cells. This process is commonly referred
to as fine MOCOMP [9]. In some systems, a third stage of
MOCAMP is further introduced directly on the image data
(rather than raw data) to improve the precision and clarity
of the ISAR image. However, all of these works limit their
discussion to ISAR images generated with a single trans-
mitter and receiver, and their effectiveness with respect to
MIMO-ISAR images has not been extensively studied.

In this work, we qualitatively and quantitatively analyze
the performance of three popular MOCOMP algorithms:
entropy minimization, cross-correlation, and phase gradi-
ent autofocus, for MIMO-ISAR images. We consider real
ISAR images generated from measurement data collected
with the Texas Instruments AWR1843 millimeter wave
MIMO radar system for experimental validation. Our re-
sults show that the cross-correlation algorithm is most ef-
fective in terms of improving the image quality metric of
MIMO-ISAR images. However, it does not perform effi-
ciently for all time instants.

Notation: Scalar variables, vectors, and matrices are de-
noted by small letters in regular font, small letters in bold,



and capital letters in bold font, respectively. Symbol ∗ rep-
resents the convolution operation.

2 Signal Model and Motion Compensation
Framework

2.1 Transmit and Received Signal

In this work, we consider a monostatic MIMO configura-
tion consisting of P transmitting antennas and Q receiv-
ing antenna elements arranged as a uniform linear array
(ULA), The transmitting and receiving elements are spaced
dtx and drx distance apart, respectively. The transmitting
antennas operate sequentially. The receiver includes Q par-
allel RF hardware chains and is, therefore, capable of digital
beamforming. At the transmitter, we generate a frequency-
modulated continuous wave (FMCW) signal characterized
by a chirp factor K and a pulse repetition interval TPRI as
shown

x(τ) = rect
(

τ

TPRI

)
e jπKτ2

. (1)

The signal is then upconverted to a mmW frequency and
transmitted sequentially from each pth antenna, as shown

xp(τ) = (x(τ)∗δ (τ − (p−1)TPRI))e j2π fcτ . (2)

Here, δ (·) is the Dirac-delta function and fc is the millime-
ter wave carrier frequency (with λ wavelength). The total
duration of P transmissions comprises one chirp loop in-
terval (TCLI). Further, L samples of TCLI correspond to the
slow time samples, t, and form a single coherent pulse in-
terval TCPI . We assume B scattering centers on an extended
target to be present in the radar channel. Each bth scatterer
is at a time-varying range of rb(t) and azimuth φb(t) with
respect to the radar. Since we have considered a monos-
tatic radar configuration, the scattering strength, σb(t), is
assumed to be identical across all the transmitter-receiver
pairs and fluctuates slowly with time. The transmitted sig-
nal gets scattered by the targets, and the corresponding re-
flected echoes are collected and processed at the receiver
elements simultaneously. The received signal at each qth

element due to pth transmitter, Yp,q, is down-converted and
expressed as a radar rectangle of fast time (τ) and slow time
(t) samples, as shown in

Yp,q(τ, t) =
B

∑
b=1

σb(t)up,b(t)uq,b(t)xp

(
τ − 2rb(t)

c

)
e j2π fDb t .

Here, up,b(t) = e− j 2π

λ
dtx(p−1)sinφb(t) and uq,b(t) =

e− j 2π

λ
drx(q−1)sinφb(t) and fDb is the Doppler frequency

due to the motion of the target. We perform stretch pro-
cessing by multiplying the received signal with e− jK(τ−τ0)

2

to obtain

Ỹp,q(τ, t) =
B

∑
b=1

σbup,b(t)uq,b(t)e
− j2π fc

2Rb
c e− jπK(δτb)

2
e− j2πτoδτb

e j2π fDb te− j2πKδτbτ .
(3)

Here, τ0 is the delay corresponding to a fixed reference
range and Rb is the initial distance of the bth scatterer with
respect to the radar. The time delay to bth point scatterer,
2rb(t)

c , is expanded as (τo+δτb), where δτb is the additional
time delay from the reference position. The first three ex-
ponential terms in Eq. 3 are constant phase terms that can
be absorbed into σb. The fourth and fifth exponential terms
are linear phase functions of slow time and fast time, re-
spectively.

2.2 Radar Signal Processing

The stretch-processed signal is followed by a two-
dimensional (2D) Fourier transform, to generate the respec-
tive range-Doppler ambiguity diagrams. This process is re-
peated for every pair of p,q elements. Then, the P×Q im-
ages are non-coherently integrated to obtain MIMO-ISAR
plots for each TCPI throughout the target’s motion. This
method enhances the target imaging by leveraging the com-
bined spatial and time domain data from multiple channels,
providing detailed visualization of the scatterers. However,
the MIMO-ISAR images still contain motion errors due to
the translational and rotational components of the target’s
motion. The range rb(t) of bth scatterer comprises the trans-
lational and rotational components and can be expanded as

rb(t) = R(t)+ xbcosψ(t)− ybsinψ(t). (4)

Here, R(t) corresponds to the range of the target’s cen-
ter of gravity with respect to the monostatic radar. xb
and yb are the local displacements of the bth scatterer in
x and y coordinates respectively from the target’s center
of gravity. ψ(t) represents the rotational angle that the
target is undergoing, which can be further expanded as
ψ(t) = ψo +αt +β t2 + · · · , where ψo, α and β represent
the initial angle, angular velocity and angular acceleration
of the target respectively. The ISAR images are generated
from the first-order rotational motion after compensating
for the translational and higher-order rotational motions.

2.3 Motion Compensation Framework

We perform the coarse and fine MOCOMP on the received
signal across P×Q channels to reduce the image quality
degradation. These steps are introduced directly at the raw
data stage for each (p,q)th channel data to generate the
single input single output (SISO) ISAR image. Then, the
images obtained after MOCOMP are non-coherently inte-
grated to obtain MIMO-ISAR. This work ignores the third
stage MOCOMP, which is sometimes performed directly
on processed images. The coarse MOCOMP is an essen-
tial pre-processing step to reduce the dominant phase er-
ror due to the translational motion of the target. Here, a
phase correction is introduced to the raw radar data based
on the phase change of the highest strength scatterer across
the slow-time samples. As a result of the phase correction,
the target is fixed in the fast time axis for different slow
time intervals. Further, we perform fine MOCOMP to es-
timate critical motion parameters and eliminate motion ef-
fects, thereby improving the clarity of the ISAR images. We
consider three popular algorithms for fine, fine MPCOMP:
entropy minimization (EM), cross-correlation (CCR), and
phase gradient autofocus (PGA). The first method, EM
MOCOMP [10] seeks to minimize entropy by iteratively



applying different values for fine motion parameters, veloc-
ity, and acceleration in a phase-compensating term to re-
move the motion effects from the coarse compensated re-
ceived signal. Next, the CCR MOCOMP [11] compares
successive reflected echoes across multiple channels by cal-
culating the cross-correlation between them, which mea-
sures how similar or aligned the signals are across different
time intervals. Further, the PGA MOCOMP method [12]
estimates and corrects for the phase difference between the
consecutive chirps iteratively, thereby sharpening the ISAR
images.

3 Experimental Setup

In this work, we describe the experimental setup that in-
volves measurements from TI AWR1843 millimeter wave
radar. We consider a Cartesian coordinate system with the
ground aligned with the xy plane and the height axis along
z. The radar is fixed at the origin with a camera fixed at
(0.2,0) m to facilitate the recording of ground truth infor-
mation, as shown in Fig. 1. The radar is oriented towards
the positive y axis while the camera is oriented at an an-
gle of 62◦ from the negative x axis. Further, we consider
a compact-size car of Hyundai Santro of 3.6×1.6×1.6 m
dimensions for an automotive target.

Figure 1. Measurement setup with TI AWR1843 radar in MIMO config-
uration, the camera (for ground truth information), and a mid-size car as a
target.

The car moves along a U-turn trajectory from an initial po-
sition at point A with coordinates (−14.3,4.9) m to point B
with coordinates (−14,30.3) m in a duration of 15 s. The
rest of the parameters for the measurement setup are listed
in Table.1.

Table 1. Measurement radar parameters

Configured parame-
ters

Values Derived parameters Values

Carrier frequency 77 GHz Duty Cycle 24.6%
Radar bandwidth 2 GHz Active-Ramp Duty Cycle 18.2% µ s
Number of Slow Time
Samples

128 Sampling Frequency 9668 ksps

Number of Fast Time
Samples

256 Maximum unambiguous
range

34.4 m

Coherent processing
interval

0.1 s Maximum unambiguous
velocity

5 m/s

Doppler resolution 10 Hz
Minimum cross-range
resolution

0.19 m

4 Results

In this section, we discuss the qualitative and quantitative
performance of the MOCOMP algorithms. We present the
results of the measured data from multiple frames corre-
sponding to different time instants of a car moving along the
U-turn trajectory with SISO and MIMO configurations of
the radar. In the MIMO setup, 12 MIMO ISAR images are

generated for each frame, corresponding to all transmitter-
receiver channel combinations. These images are sub-
sequently non-coherently integrated to produce a MIMO-
ISAR consolidated frame for each time instant. Firstly, we
discuss the results for SISO configuration in Fig. 2, where
each column represents a frame of time instants: 8.1s, 8.4s,
8.6s, 8.7s, and 9.0s. These time instants are chosen as
these frames capture the car’s turning motion along the U-
trajectory and are most useful for generating ISAR images.
Further, we obtain some blank frames at initial time instants
for both SISO and MIMO configurations where the target
is not in the radar’s field of view. These frames are used
for calculating the noise floor. All the results for the SISO

Figure 2. Range-Doppler ambiguity diagrams of the mid-size car taken
from radar in SISO configuration where five columns of each row corre-
spond to different time frames: 8.1s, 8.4s, 8.6s, 8.7 and 9.0s. This first row
(a-e), second row (f-j), third row (k-o), and fourth row (p-t) includes the
plots without MOCOMP, after coarse MOCOMP along with entropy min-
imization MOCOMP, PGA MOCOMP, and CCR MOCOMP, respectively.
The range along the vertical axis spans from 0 to 34.4m with a range res-
olution of 0.13m, while the Doppler index spans along the horizontal axis
spans from 1 to 128.

case show that poor SCNR limits the image quality. The
first row shows ISAR images without MOCOMP. Here, we
observe the displacement of the target along the range axis
for different frames due to the translational motion of the
car. Further, we observe prominent fluctuations in the noise
floor. We present the results for ISAR images after coarse
MOCOMP in Fig. 2 (f-t) for multiple frames and observe
that the target gets fixed along the range and Doppler axes.
In Fig. 2 (f-j), ISAR results after fine MOCOMP based on
entropy minimization are presented, where we observe sig-
nificant smearing of the radar signatures. However, the
noise floor fluctuations have slightly improved along with
the clutter suppression. The results from the measurement
data are, therefore, significantly different from the simula-
tion scenario, indicating the limitations of the algorithm’s
performance in real-world scenarios. The results for PGA
MOCOMP are presented in Fig. 2 (k-o), where we observe
a significant improvement in the radar signatures as com-
pared to the entropy minimization but the range sidelobes
are prominently visible in all the frames. Lastly, we present
the results for CCR MOCOMP in Fig. 2 (p-t). This algo-
rithm is implemented iteratively with slight improvement
in each iteration. In this work, we consider 97 iterations
to obtain efficient MOCOMP results. However, this algo-
rithm performs very well for some frames (u, w, x) but does
not for the v and y frames of Fig. 2. Next, we present the
results for the MIMO configuration in Fig. 3. Here, we ob-
serve that the SCNR of the MIMO-ISAR images is greater
than the SISO-ISAR images for all the frames capturing the
car’s motion. The first row includes the results generated
without MOCOMP. As a result, we observe the displace-
ments due to the translational motion. The rest of the rows
represent the viewgraphs with coarse MOCOMP, where we



Figure 3. Range-Doppler ambiguity diagrams of the mid-size car taken
from radar in MIMO configuration where five columns of each row corre-
spond to different time frames: 8.1s, 8.4s, 8.6s, 8.7 and 9.0s. This first row
(a-e), second row (f-j), third row (k-o), and fourth row (p-t) includes the
plots without MOCOMP, after coarse MOCOMP along with entropy min-
imization MOCOMP, PGA MOCOMP, and CCR MOCOMP, respectively.
The range along the vertical axis spans from 0 to 34.4m with a range res-
olution of 0.13m, while the Doppler index spans along the horizontal axis
spans from 1 to 128.

Table 2. Coefficient of variation in MIMO and SISO for different MO-
COMP algorithms applied on the measured data

Case SISO MIMO % im-
prove-
ment in
SISO

% im-
prove-
ment in
MIMO

No MOCOMP 0.56 0.24 - -
Entropy minimization 0.56 0.24 0.1 0.1
Phase gradient autofocus 0.54 0.19 3.57 17.19
Cross-correlation 0.52 0.15 6.76 36.26

observe that the target gets fixed along the range axis and
Doppler axis. The second row shows the results with fine
MOCOMP based on entropy minimization. Here, the tar-
gets are smeared/blurred for every time frame. The third
row of Fig. 3 shows the results generated from PGA-based
fine MOCOMP. Here, we observe the sidelobes across the
Doppler axis become prominent. Lastly, we present results
with CCR MOCOMP in the fourth row, where we observe
significant improvement in MIMO ISAR images of frames
(p),(r), and (s). However, it performs poorly for frames (q)
and (t). The measurement results presented in Fig. 2 and
Fig. 3 also show the presence of ghost targets attributed
to multipath effects. We also compare the MOCOMP al-
gorithms through a quantitative metric - the coefficient of
variation - of the noise floor for both sets of images in Ta-
ble.2. This metric is the ratio between the mean and vari-
ance of the noise floor calculated from the blank frames
obtained from initial time instants. The metric accounts
for both SCNR improvement in the MIMO configuration
versus the SISO and the focusing capabilities of the fine
MOCOMP algorithms. The table shows that this value is
lower for the MIMO-ISAR for all MOCOMP cases than
for the SISO. This results in an overall improvement in the
contrast between the signal returns from the target and the
noise and clutter components in the background. The re-
sults of fine MOCOMP with CCR are superior to PGA and
entropy minimization, demonstrating an overall improve-
ment of 36% for MIMO-ISAR.

5 Conclusion

This work presents MOCOMP MIMO-ISAR radar imag-
ing results for measured experiments at millimeter-wave
frequencies. The MIMO-ISAR images demonstrated en-
hanced signal strength compared to their SISO-ISAR coun-
terparts. This is especially useful in automotive scenar-

ios where the images are characterized by significant road
clutter. Among the motion compensation techniques, CCR
MOCOMP outperformed both entropy minimization and
PGA, achieving a 36% overall improvement in image qual-
ity for MIMO-ISAR. However, this method was not consis-
tently effective for all frames. These results underscore the
requirement for new algorithms for MOCOMP in MIMO
scenarios for real-world conditions and diverse target sce-
narios.
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