Study of Path Loss Models in V2V mm-Wave Communication

Susovan Mondal* (1) and Dalia Nandi (2)
(1) Research Scholar, Department of ECE, Indian Institute of Information Technology, Kalyani
(2) Assistant Professor, Department of ECE, Indian Institute of Information Technology, Kalyani

Abstract

Recent research has focused on millimeter wave (mmWave) bands as a way to improve automated driving and meet the demanding data rate and latency requirements of developing automotive applications. Accurate channel models that can predict the uniqueness of vehicular propagation at these bands, particularly about Vehicle-to-Vehicle (V2V) communications, are required for the development of such systems to operate in bands over 6 GHz. In this paper, we have validated the proposed mmWave path loss models for the NR-V2X system with the help of link-level simulation. Here bit error rate (BER) performance of three path loss models has been compared by varying inter-vehicular distance (IVD). We also observe the effect of different modulation schemes on the BER curve for a fixed path loss model and proposed the best-suited modulation technique for the mm-wave V2X system.

1. Introduction

In recent days plenty of research is going on in the area of V2X communication in academia and industry to provide reliable data communication between Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Network (V2N), and Vehicle to Pedestrian (V2P) to enable automated driving, increased road safety, vehicle platooning, reduce environmental impacts and provide traveler information service, etc. [1],[2]. In this regard, starting with the 3GPP Release-16 Study Item (SI) on NR-V2X, the 3rd Generation Partnership Project (3GPP) has recently developed some functionalities to provide enhancements to the conventional communication standards for both V2V and V2N communications [3]. This development includes NR-based sidelink design and V2X service in mm-wave bands. But mm-wave bands, above 52.6 GHz face more propagation and penetration loss than the conventional mm-wave band (below 52.6GHz) [4]. Therefore, a more accurate channel is required in this band to design a reliable communication link. [5],[6], and [7] several attempts have been made to design realistic channel models in mm-wave bands by real-time measurements. The 3rd Generation Partnership Project (3GPP) in [8] specified how to model channels for mm-wave frequencies, especially for V2V applications. Path loss models for vehicular and environmental blockages in highway and urban scenarios have been proposed. In [9] a system-level simulation study of 3GPP path loss models has been proposed. In this paper, we did a link-level simulation study for 3GPP path loss models and proposed a modulation scheme suitable for the mm-wave NR-V2X system.

2. Path Loss Models

According to [8] in V2V communication, the path loss model can be derived for the following states:

(a) LOS: Here two vehicles are on the same road and the LOS path is not blocked by other vehicles.
(b) NLOSv: In this case, the link between two vehicles is blocked by other vehicles and they are on the same street.
(c) NLOS: V2V link is blocked by environmental blockages, like buildings, trees, etc.

2.1 LOS Path Loss Models

The path loss model for the LOS condition is described in equations 1 & 2.

\[P_{LOS(H)} = 32.4 + 20 \log_{10}(d) + 20 \log_{10}(f_c) + \gamma_{SF} \]
\[P_{LOS(U)} = 38.77 + 16.7 \log_{10}(d) + 18.2 \log_{10}(f_c) + \gamma_{SF} \] (1) (2)

Here \(P_{LOS(H)} \) and \(P_{LOS(U)} \) are the respective path loss in highway and urban scenarios. Also, \(d \) denotes the Euclidean distance in meters, between two vehicles, \(f_c \) is the center frequency in GHz and \(\gamma_{SF} \) is the loss due to shadowing. The value of \(\gamma_{SF} \) is 3.3dB and 5.2dB in highway and urban environments.

2.2 NLOS Path Loss Models

For NLOSv condition, the additional vehicle blockage loss \(A_{NLOSv} \) can be modeled as a log-normal random variable with mean \(\mu_A \) and standard deviation \(\sigma_A \). The height is vehicle height randomly selected among three types of vehicles described in [10]. Depending on different vehicle types the \(A_{NLOSv} \) can be evaluated as shown in table 1.

| Table 1. Calculation of \(A_{NLOSv} \) in three different environments. |
|-----------------|-----------------|-----------------|
| Minimum of Tx and Rx antenna height > Blocker height | \(\mu_A = 0dB \) | \(\sigma_A = 0dB \) |
Finally, the path loss can be derived for NLOS\(v\) using equations 3 & 4.

\[
P_{\text{NLOS}(v)} = P_{\text{LOS}(v)} + A_{\text{NLOS}(v)}
\]

\[
P_{\text{NLOS}(u)} = P_{\text{LOS}(u)} + A_{\text{NLOS}(v)}
\]

The NLOS path loss model can be expressed by equation 5.

\[
P_{\text{NLOS}} = 36.85 + 30\log_{10}(d) + 18.9\log_{10}(f_c) + \gamma_{SF}
\]

3. Simulation Setup

In this paper, we have performed a link-level simulation of the V2V network in MATLAB. All the simulation parameters are mentioned in table 2. Here user data is convolutionally encoded and mapped to symbols using QPSK/16QAM/64QAM and converted to a time domain signal by OFDM modulation. Then the time domain signal has been passed through a Rayleigh fading channel. At the receiver, an additive white gaussian noise (AWGN) has been added. After demodulation and channel equalization, the bit error rate (BER) has been calculated for different inter-vehicular distances (IVD), carrier frequencies & modulation techniques.

<table>
<thead>
<tr>
<th>Table 2. Simulation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency</td>
</tr>
<tr>
<td>Sub Carrier Spacing</td>
</tr>
<tr>
<td>FFT Size</td>
</tr>
<tr>
<td>Cyclic Prefix</td>
</tr>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>Channel</td>
</tr>
<tr>
<td>Tx antenna height</td>
</tr>
<tr>
<td>Rx antenna height</td>
</tr>
<tr>
<td>Transmission Power</td>
</tr>
</tbody>
</table>

4. Results

In Fig. 1 we have plotted IVD vs BER for three 3GPP mm wave path loss models. As foreseen, the BER increases very quickly in NLOS conditions compared to the other two models. Science in NLOS scenario the path loss is higher which directly affects BER.

![Figure 1](image1.png)
Figure 1. IVD vs BER plot for different path loss models. \((f_c=63GHz, \text{Modulation: QPSK & SNR}=20dB)\)

The BER vs IVD is plotted for different modulation schemes and path loss scenarios in Fig. 2-4. In all three plots \(f_c=63GHz\) and SNR=20dB. From these plots, it is very clear that with increasing IVD, the path loss increases which in turn increases BER. From Fig. 2 & 3 we can observe that among the three modulation schemes, QPSK gives the best BER performance. Although at higher IVD, BER increases but compared to other modulation techniques QPSK shows better results. In the NLOS condition (Fig.4) again QPSK shows better results but when IVD increases, the BER increases very rapidly and became flat after 600 meters.

![Figure 2](image2.png)
Figure 2. IVD vs BER plot in Highway (LOS) scenario. \((f_c=63GHz \& \text{SNR}=20dB)\)
5. Conclusions & Future Work

In this present study, simulation-based comparisons of 3GPP path loss models have been presented. The BER curves for all path loss models are plotted concerning inter-vehicular distance (IVD). From this plot, we can conclude that the NLOS path loss model shows poor BER performance compared to the other two path loss models. We also presented a comparative study among different modulation techniques for all three path loss scenarios. From this study, it is very much clear that QPSK performs well in all three 3GPP path loss models proposed for the millimeter wave NR-V2X system.

In our future work, we will try to predict the path loss models using real-time measured data and according to that, we will change our modulation schemes in the V2V communication system.

6. References

8. 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 14),” TR 38.901, 2018.