Time-Efficient Computation of EOS-04 Cross-Polarization Imbalance

Himanshu Sharma, Yogendra Sahu, Vetal Akshay Pandit, Ashok Rohada, Ameya Anil Kesarkar,
Parth S. Nandy, Swati Shukla, J. Rao, Pankaj K. Nath, Rakesh Bhan, C. V. N. Rao
Space Applications Centre, India
Corresponding author email: shimanshu018@sac.isro.gov.in

Abstract

Measurement of Cross-Polarization Imbalance (CPI) of the phased array antenna is a critical step during SAR payload characterization. In this paper, we demonstrate a time-efficient measurement scheme of H-V CPI for EOS-04 antenna via single 2-D raster-scan near-field measurements. The set-up utilizes full-polarization mode of EOS-04 payload and a dual polarized probe for this purpose.

1. Introduction

The electromagnetic field radiated by an antenna is typically classified into three regions based on their locations from antenna aperture: 1) Reactive Near-Field: 0 to 3λ, 2) Radiating Near-Field: 3λ to \( \frac{2\times10^2}{\lambda} \), 3) Far-Field: \( \frac{4\times10^2}{\lambda} \) (D: Maximum Antenna Dimension and \( \lambda \): RF wavelength.) [1], [2], [3]. Near-field measurements are used to generate far-field patterns of the large sized phased array antennas [4]. Far-field pattern generation is a topic of interest in several works reported in the literature [5], [6], [7]. Cross-polarization imbalance, which refers to the amount of power coupled between two orthogonally polarized ports, is a key parameter to assess the dual-polarization antenna as cross-polarization closely affects the antenna application [8]. Dual-polarized antennas with better cross-polarization isolation are desirable for more convenient polarimetric data calibration [9].

EOS-04, a space borne C-Band Synthetic Aperture Radar (SAR), has recently been launched by ISRO to provide continuity of the services by its predecessor RISAT-1. It is configured with an active phased array antenna of dimension 6m (azimuth) x 2m (elevation/range) having dual polarized transmit-receive modules.

Measurement of H-V Cross-Polarization Imbalance (CPI) of the phased array antenna is important during SAR payload characterization as the source of crosstalk is mostly from the cross-polarization level of the SAR antenna [10]. For computing H-V CPI of the given antenna, one requires 4 types of far-field patterns, namely, H-Co, H-Cross, V-Co, V-Cross. The individual near-field 2-D raster scan measurement for each of these cases is a time-consuming process, thereby requiring considerably high payload checkout-time. For EOS-04 H-V CPI measurement, we expedite this process by utilizing its full-polarization mode and a dual polarized probe, thereby requiring only a single near-field 2-D raster scan.

The paper is organized as follows: Section 2 presents details of our measurement set-up that requires single 2-D scan for simultaneous estimation of H-V CPIs. In Section 3, we discuss the obtained results for EOS-04 in 3 modes, namely, Medium Resolution ScanSAR (MRS), Fine Resolution Stripmap-2 (FRS-2), and Fine Resolution Stripmap-1 (FRS-1). Finally, Section 4 provides the concluding remarks.

2. Measurement Set-up for Time-Efficient CPI Estimation

As seen from the figure 1, the 2-D near-field data acquisition consists of 1) Active phased array radiating antenna and 2) Receiver Probe Antenna (open-ended waveguide-type) mounted on a movable scanner which can be positioned anywhere in front of radiating antenna in 2-D plane. The movable scanner moves the probe antenna over a raster scan path that captures all significant microwave emissions from radiating active phased array antenna. The path of motion is constrained to a 2-D plane, which lies at a distance of close to 10\( \lambda \) (50cm) from antenna plane.

![Figure 1: Measurement Inside Near Field Chamber](image)

Before actual measurement, roll-pitch-yaw (R-P-Y) of antenna plane are carefully aligned with scanner...
plane. The accuracy parameters of R-P-Y alignment are given in Table-1.

<table>
<thead>
<tr>
<th></th>
<th>Roll (R)</th>
<th>Pitch (P)</th>
<th>Yaw (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>0/360deg.</td>
<td>0/360deg.</td>
<td>0/360deg.</td>
</tr>
<tr>
<td>Measured</td>
<td>0.073deg.</td>
<td>0.132deg.</td>
<td>0.095deg.</td>
</tr>
</tbody>
</table>

Table 1: Antenna Alignment w.r.t. Scanner Plane

Figure 2 shows the block diagram of measurement set-up for time-efficient CPI estimation. In full-polarization mode of operation, the EOS-04 SAR antenna radiates microwave signal in both H and V polarizations alternately. This microwave signal is received by the dual polarized probe. For transmitted H and V polarized signals, co and cross-pol signals are received as shown in figure 3.

Figure 2: Block Diagram of Measurement Set-up

For H polarization transmission case, one receives near-field data for H-Co and H-Cross for given position of the probe. Similarly, in the next pulse repetition cycle, i.e. V polarization transmission case, one gets near-field data for V-Co and V-Cross. For each position of the scan, captured chirp signal is time-correlated with a constant reference signal. Subsequently, the peak Amplitude and corresponding phase of the time-correlated signal is calculated. This information is further back-projected towards the surface of Phased array antenna to generate Hologram and corresponding Far field antenna patterns as described in [4].

In this way, we get the far-field 3-D patterns for H-co, H-cross, V-pol, and V-cross in a single 2-D scan, from which, the H-V CPIs are obtained by subtracting the Co-Pol peak from Cross-Pol peak in each case. This process reduces the CPI computation time considerably (to 25%), as it does not require individual scans for H-co, H-cross, V-pol, and V-cross far-field patterns.

3. CPI Computation for EOS-04 Antenna

Using the full-polarization mode of EOS-04 (i.e. HH (H-Co), HV (H-Cross), VH (V-Cross), VV (V-Co)), the near-field data is received in H and V polarization for alternately sent H and V transmit pulses. Correspondingly, the far-field antenna patterns are generated in each case. This is done for three bandwidth modes, namely MRS (18.75MHz), FRS-2 (37.5 MHz), and FRS-1 (75 MHz).

Figure 4 and figure 5 show the amplitude and phase holograms for H polarization in MRS mode.
The holograms for V polarization in MRS mode are shown in figure 6 and figure 7.

Figure 6: MRS: Amplitude Hologram for V

Figure 7: MRS: Phase Hologram for V

Figure 8 shows the generated co and cross-pol far-field patterns for transmit H case in elevation direction for MRS. Figure 9 presents the corresponding patterns in transmit V case.

Figure 8: MRS: Co and Cross Pol Patterns For Tx H

Figure 9: MRS: Co and Cross Pol Patterns For Tx V

The similar patterns corresponding to FRS-2 and FRS-1 are shown in figures 10-11 and figures 12-13, respectively.

Figure 10: FRS 2: Co and Cross Pol Patterns For Tx H

Figure 11: FRS 2: Co and Cross Pol Patterns For Tx V

Figure 12: FRS 1: Co and Cross Pol Patterns For Tx H

Figure 13: FRS 1: Co and Cross Pol Patterns For Tx V
**Table 2: CPIs for MRS, FRS2, and FRS1**

<table>
<thead>
<tr>
<th>Tx</th>
<th>Rx</th>
<th>MRS</th>
<th>FRS2</th>
<th>FRS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>V</td>
<td>33.1dB</td>
<td>34.1dB</td>
<td>35.8dB</td>
</tr>
<tr>
<td>V</td>
<td>H</td>
<td>31.4dB</td>
<td>29.3dB</td>
<td>41.8dB</td>
</tr>
</tbody>
</table>

### 4. Conclusion

In this paper, we presented a time-efficient scheme for computation of H-V CPIs of EOS-04 antenna with a single 2-D scan near-field measurement using dual-polarized probe. For this purpose, we utilized the full-polarization mode of EOS-04, which transmits H and V polarized signal in alternating pulses. The CPIs were measured for three bandwidth cases, namely, MRS, FRS2, and FRS1.

### References


