Challenges of Ionogram Autoscaling

Lessons Learned from ARTIST-5 Evaluation

I. A. Galkin, B. W. Reinisch, G.M. Khmyrov, A.P. Kozlov, X. Huang, and V.V. Paznukhov

University of Massachusetts Lowell
Environmental, Earth, and Atmospheric Sciences Department
Center for Atmospheric Research
Ionogram Autoscaling

MILLSTONE HILL, MHJ45

1996.04.01 (092) 19:34:37 SIE

SAO Explorer, v 3.4.11b1
Outline

> **Challenges of Automatic Ionogram Scaling:**
 ✓ A. Make less errors
 ✓ B. Detect significant errors by post-analysis to disqualify such data
 ✓ C. Characterize uncertainty of ionogram-derived data due to autoscaling errors

> **Autoscaling Confidence Level (ACL)**
 ✓ Prevent low confidence data from assimilation

> **ARTIST-5 Uncertainty Study**
 ✓ Error Bounds for Characteristics
 ✓ Error Boundaries for Electron Density Profile (EDP)
A. Make Less Autoscaling Errors

> Solutions vary among different ionosonde providers

> Solutions are specific to autoscaling software design
 ✓ Computer Vision approach
 ✓ Signal Processing approach
 • Phase-aware techniques
 ✓ Ne Profile Morphing approach

> ARTIST-5 released May 2007
 ✓ Improved performance
 ✓ Improvements qualified by manual vs. auto studies
 • Using ~250,000 manually scaled ionograms in Lowell DIDBase
Lessons Learned

> ARTIST needs to operate during periods of degraded hardware capability
 ✓ Polarization tagging
 ✓ Directional analysis
 ✓ Precision ranging
 ✓ Signal to noise ratio
 ✓ Non-optimal measurement settings
 • Frequency resolution
 • Range coverage

> Warranted additional effort directed at computer vision techniques
 ✓ Good “background” model
ARTIST-5 Innovations

ANNA

© 1993-2007

Artificial Neural Network Algorithm

PACIFIC

Program for Autoscaling of Conventional Ionograms with Flexible Interpretation Control

© 2007

A45

1 km
ANNA: Extraction of traces

- Original design: 1993-1994
- Bio-plausible additions: 2003-2004
- New clustering algorithm: 2007

Rotor interaction (co-circular model)

Hopfield Recurrent ANN

Honda ASIMO
Seeks trace segments pointing up
Considers 6 configurations A-F
Fits O- and X-cusps independently and refits if they do not match
Allows down-grading to ionograms without polarization tagging or with swapped polarizations

✓ Learmonth, Australia
✓ Jicamarca, Peru
A45: Edgel detection

IONOGRAM thresholded

Classic edgel detection

A45 edgel detection
ARTIST-5 Lessons learned

> Accurate foF2 cusp processing is most important
 ✓ Careful with cusp extrapolation above last trace point

> Imperfections in trace extraction are not important
 ✓ Small effect on Ne density profile

> NHPC Profile inversion works as trace gap interpolator
ARTIST-5: Lessons learned (2)

> Short steep high traces are most difficult
 ✓ Summer
 ✓ Low solar activity
 ✓ Storm time / F3 layer

> Second hop traces are difficult
 ✓ from sporadic E layer
 ✓ stronger than 1st hop trace

> Ionograms taken during spread F conditions shall be processed differently
B. Detect Significant Errors

> Detect significant autoscaling errors to avoid their assimilation
 ✓ Describe remaining minor errors statistically
 • Error bars for characteristics
 • Error boundaries for EDP

> History of error detection by post-analysis:
 ✓ USAF QUALSCAN © 1986-2008
 ✓ ADEP “Merit check” © 1990-1992
 ✓ ARTIST-4 C-Level © 1994-1995
 ✓ JORN Australia Quality Control
 ✓ ARTIST 5 © 2006-2008
ARTIST-5 Confidence Score

> Determined automatically by inspecting both interpretation process and its outcome for anomalies
> Confidence Score ranges from 0 to 100
> Starting score is 100
 ✓ Lower starting score for ionograms with spread F
> Confidence score is lowered each time a quality criterion is violated
> If final score gets below 50, the scaling is flagged as low confidence
AFWA DISS data for GAIM

> 14 DISS digisondes, 17 contributing digisondes send their data to AFWA GAIM for assimilation

> ARTIST-5 software upgrade in progress for digisondes to avert low confidence data from assimilation
C. Characterize Uncertainty

> Probability that true value lies within the uncertainty bounds placed around given value
 ✓ σ, 2σ, 3σ, 80%, 90%, 95% probability

> Frequently called “Error Bar”

> Multiple sources of uncertainty:
 ✓ Autoscaling errors
 ✓ Model assumptions
 ✓ Equipment and processing bias
 ✓ HF propagation factors
Error Bounds and Error Boundaries

Roquettes, EB040

Error Bounds and Error Boundaries
ARTIST f_0F2 scaling, all records

Pruhonice DPS-4, 20675 ionograms (100%)

ARTIST underscales f_0F2

-0.45 MHz

95%

ARTIST overshoots f_0F2

$+0.15 \text{ MHz}$
Automatic Spread-F Detection

All ionograms

Error bounds

Moderate spread

No spread

Heavy spread

Error bounds 1

Error bounds 2

Error bounds 3
Ionogram Classification

- Qualification is tailored to each digisonde station individually

- THREE CLASSES:
 - Quiet ionosphere (no spread)
 - Moderately disturbed ionosphere
 - Heavily disturbed ionosphere

- TWO SUB-CLASSES in each class based on Autoscaling Confidence Level (ACL)
 - Confidently scaled ionograms (ACL=1)
 - Not confidently scaled ionograms (ACL=0)
 - Only confident (ACL=1) records are sent to assimilation
Quiet-Confident Category

ARTIST 5 foF2 scaling, all records

ALL

Průhonice DPS-4, 20675 ionograms (100%)

Percent

Error, MHz

ARTIST underscales foF2

ARTIST overshifts foF2

-0.45 MHz

+0.15 MHz

95%

Lower bound = -0.45 MHz

ARTIST 5 foF2 scaling, quiet and confident category

QC

Průhonice DPS-4, 16712 ionograms (81%)

Percent

Error, MHz

ARTIST underscales foF2

ARTIST overshifts foF2

-0.3 MHz

+0.15 MHz

95%

Lower bound = -0.3 MHz
Comparison Results for foF2

<table>
<thead>
<tr>
<th>Location</th>
<th>System</th>
<th>ARTIST version</th>
<th>Total manual ionograms</th>
<th>ACL=1 percentage of all ionograms</th>
<th>Lower bound foF2 MHz</th>
<th>Upper bound foF2 MHz</th>
<th>Unscalable ionograms % of all ionograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulder, CO</td>
<td>DISS</td>
<td>4.5</td>
<td>47,261</td>
<td>82 %</td>
<td>-0.3</td>
<td>+0.3</td>
<td>8 %</td>
</tr>
<tr>
<td>Vandenberg</td>
<td>DISS</td>
<td>4</td>
<td>4,660</td>
<td>78 %</td>
<td>-0.7</td>
<td>+0.7</td>
<td>4 %</td>
</tr>
<tr>
<td>Dyess</td>
<td>DISS</td>
<td>4</td>
<td>6,881</td>
<td>87 %</td>
<td>-2.4</td>
<td>+1.0</td>
<td>3 %</td>
</tr>
<tr>
<td>Dyess</td>
<td>DISS</td>
<td>5</td>
<td>6,881</td>
<td>90 %</td>
<td>-0.3</td>
<td>+0.5</td>
<td>3 %</td>
</tr>
<tr>
<td>Roquetes</td>
<td>D-256</td>
<td>5</td>
<td>125,046</td>
<td>85 %</td>
<td>-0.3</td>
<td>+0.4</td>
<td>5 %</td>
</tr>
<tr>
<td>Grahamstown</td>
<td>DPS-4</td>
<td>5</td>
<td>5,251</td>
<td>85 %</td>
<td>-0.1</td>
<td>+0.2</td>
<td>1 %</td>
</tr>
<tr>
<td>Pruhonice</td>
<td>DPS-4</td>
<td>5</td>
<td>20,675</td>
<td>88 %</td>
<td>-0.15</td>
<td>+0.35</td>
<td>3 %</td>
</tr>
<tr>
<td>Gakona, AK</td>
<td>DPS-4</td>
<td>5</td>
<td>11,109</td>
<td>48 %</td>
<td>-0.25</td>
<td>+0.6</td>
<td>13 %</td>
</tr>
</tbody>
</table>

TABLE 3: ARTIST foF2 validation results. Error bounds are given at 95% probability level for ionograms in quiet & confident category.
Summary

> Major campaign of ARTIST testing has been conducted using ¼ million manually scaled ionograms

> Error bounds are determined, enabling proper assimilation of ARTIST data
 ✓ foF2, foF1, foE
 ✓ Electron density profile

> ARTIST Confidence Level (ACL) is important and effective tool for quality control
 ✓ Low confidence data shall not be assimilated
 ✓ ~15% of data can be removed because of ACL

> UMASS Lowell developed tools and process data to aid further ARTIST development
Acknowledgements

> **UMLCAR Scaler Team:**
 - Jason Conway
 - Daniil Khmyrov
 - Keith Sorota
 - Dima Paznukhov
 - Cindy Shugrue
 - Ebrahim Nasser
 - William Kersey

> **International Scaler Team:**
 - David Altadill, *et al.*
 - Dalia Buresova
 - Katy Alazo Cuartas
 - Inigo Blanco

FREE ACCESS TO MANUALLY SCALED IONOGRAMS in DI DBASE