Novowy 1< T

JU «UE/’ J-oo9
U< Aup CoOMMmon i 4 rimas ik Beo i .
THrs wits NeT AFQ ooy

8y EVE I 80

A SEFTW A AS <
PTUAfe w ot A PUT UG

Toen oL

{03:\’\ as raé’t (tmsﬁ&""ﬁl

AUSTRALIAN GOVERNMENT))
DEPARTMENT OF ADMINISTRATIVE SERVICES E‘%‘“i‘*’“

IPS RADIO AND SPACE SERVICES ~ shddewn | ous
o — (reloest)
%

v

HANDBOOK 3 OF 3

FOR

IONOSONDE TYPE 4B/D

UNIX CONTROL AND COMMUNICATIONS COMPUTER
FOR IPS IONOSONDE 4D

V2.1
ISSUED

AUGUST 1997

HANDBOOK: Richard Luckhurst
- DESIGN: Craig Bevins

. “ [1 yj j’ [l]
vor] Tl
H bl
i : ‘ . J il '
PRI 3 AR
o . Lo Hiﬁ& P
N it t |
o B 3
'w.‘ 7 o
e e -l
] Y IR T ' '
A B B bt U o A R

IPS RADIO AND SPACE SERVICES
Level 4, 15 HELP ST, CHATSWOOD NSW 2067
PO BOX 5606, WEST CHATSWOOD NSW 2067

Telephone: (02) 9414 8334 Fax: (02) 9414 8331

Handbook for Ionosonde Type 4B/D

CONTENTS

Introduction

The Communications Computer

How An Ionogram Gets to IPS Head Office
Backups

IPS Scaling Program

Introduction To UNIX (Ohio State University)

Z Shell

Handbook for Tonosonde Type 4B/D

1. INTRODUCTION

For a number of years IPS Radio and Space Services has operated 4B Ionosondes throughout
Australia and Antarctica. Until 1993 the lonograms, collected by these instruments, were
recorded on 16mm film for later analysis. The use of film meant that there was a considerable
delay between the ionogram being recorded and the data arriving at the TIPS Head Office.
Continued use of film would mean that a “Real Time’ data network could not be established.

In 1993 a program to install the Digion conversion on the network of 4B Ionosondes
commenced. This program would see the end of film but did little to get the data back to IPS
any quicker than if film were still being used. Throughout 1994 data files were transferred
back electronically, on a regular basis, from the Antarctic sites but this was slow and meant
considerable effort was required.

In mid 1994 a new system was proposed by Craig Bevins, at that time the IPS Radio and
Space Services IT Manager, which would see the data coming back from Antarctica each day
with no interaction required by any staff. The system featured a second computer, running the
UNIX operating system, to collect the daily data files, from the digion, and send them to IPS
Head Office. Three of these systems were installed in Antarctica in the summer of 1994 and
IPS started receiving daily ionogram files.

Since the initial installation considerable effort has gone into improving the performance of
these ‘communication computers’. A new software package, for the DOS Digion PC, was
written in 1995 which allows files to be retrieved faster than once each day and also for the
configuration files on the DOS PC to be changed remotely.

lao-ﬁ\\c-

Handbook for Ionosonde Type 4B/D

2. THE COMMUNICATIONS COMPUTER

To keep the cost down and to allow for easy replacement of components a 486 PC was chosen
as the communications computer. This computer was fitted with a Digital Audio Tape (DAT)
drive to allow for local backups of ionosonde data. To allow for easy networking and good
multi-tasking a good operating system was needed.

At this time a number of ‘free’ UNIX and UNIX-like operating systems were appearing for
the 1386 architecture, the NetBSD operating system was chosen. NetBSD is a Berkeley
Networking Release 2 (Net/2) and 4.4 BSD-Lite derived system. It has been ported to a
number of architectures and was a creation of members of the international networking
community. The operating system feature support for the industry standard X-Windows
environment.

The computers initially chosen were DEC 486 PC’s with 8 Mbytes of RAM and a SuperVGA
graphics card. A DAT drive and SCSI card were installed for local backups and an Ethernet
card was installed to allow for a connection to the station Local Area Network (LAN).

The DOS Digion PC was connected to the UNIX Communications PC via a simple serial link.
The ionogram files are transferred, once each day, using the ‘kermit’” communications
program. After receiving the files they are processed, to allow for easy viewing, and then late
at night transferred to IPS Head Office,

An account has been established on this computer, called digion with the password of
prediction, for the day to day operation of the system.

2.1 MACQUARIE ISLAND

During 1996 it was decide that an attempt would be made to link the Macquarie Island
Ionosonde hut to the system LAN with a higher speed data link. This installation required two
Communications Computers’ with a Spread Spectrum Radio System providing the data link.

The original *Communications Computer’ was replaced by two 75mhz Pentium PC’s. The
NetBSD operating system was replaced by FreeBSD, which offers better support for interface
cards in the 1386 architecture.

r wm =
VO i U3 ™

11_W D \J U Aur= <TRU - FI Fi

skl {\ Lg_.,_w " o

For further information refer to the ‘IPS Macq%rle&%nd Digion LAN’ handbook.

‘;f’tﬁic‘

éS Cﬂ-\’a'@&

Handbook for Ionosonde Type 4B/D

3. HOW ANIONOGRAM GETS TO IPS HEAD OFFICE

Simplified connection from Antarctic 4D and IPS Head Office.

[1

Tonosonde (SE'%E_L‘E‘ P DOSPI()jlglon

Ethernet Link |

e

|
v Internet

Unix Comms PC | - - - - :.,,.1'

IPS Head Office

There are many steps involved in an ionogram file getting from the Ionosonde to IPS Head
Office. There are a number of points along the way that the file may be examined or archived.

1. The ion.bat file calls getion.exe. Ionograms are recorded to a file on the
DOS PC.

2. At the end of the day getion.exe exits.

3. The next step in ion.bat archives the day file to local storage. (DAT drive)

4, The file then gets sent, using kermit, to the UNIX PC.
5. The raw file ends up in a directory called raw in the digion account.

6. Some time late a process, called 4d2ips, runs and the file gets converted
into the ‘standard’ IPS format. This allows the ionograms to be examined
and scaled using the same software, called plotcin or scale, as IPS Head
Office.

7. The raw file gets archived to a DAT tape and gets stored on the local hard
drive in an Archive directory under the raw directory.

8. The cleaned file gets stored on the hard disk in a directory tree under cln
under site4d where sife is mac, maw or davis.

4

10.

Il

Handbook for Ionosonde Type 4B/D

At a predetermined time the raw file gets transferred to IPS Head Office.
This is usually late at night when the link to Australia in quiet.

The next morning a process runs in Sydney and the raw file is archived and
converted to the ‘standard’ IPS format for scaling.

Note: All storage after format conversion is done in a_compressed
format.

Another process runs each day cleaning up the number of raw files on the
system. Only the last 90 days are kept on the system.

The ionogram data has been archived at a number of points along the way and it
can be viewed, if desired, at a number of points.

1.

The first place the data gets stored is on the DOS PC. There is an archive
directory where the data is stored in zip format. The raw data is also
written to a local DAT tape. The digion.exe program can be used to view
the raw data files and if needed the pkunzip program is installed in the
c:\bin directory.

NOTE: At some sites the DAT drive has been commented out of
ion.bat, Strictly speaking it is not really needed as the data should get
transferred. The DAT drive has been left in place in case the UNIX
PC fails.

The raw file is only held briefly in the raw directory in the digion account.
It is not possible to view the raw files on the UNIX PC.

The raw file, now compressed is stored in the Archive directory under the
raw directory.

,,,,,,, Handbook for Ionosonde Type 4B/D

4, In the site4d directory there is the following directory tree:
Adion

macdd archivnas

(losk G0 duns 5 raco
doi'a.)CF Aﬂﬁ i

cln scl

01 02 03 04 05 06 07 08 09 10 11 12

cleaned ionograms

These cleaned ionograms can be viewed using the scale program in the X-Windows
environment, in the digion account.

Handbook for Ionosonde Type 4B/D

4. BACKUPS

There are no routine backups to be done on the DOS Digion PC. Each installation was
supplied with a floppy disk containing the system files and this can be used to restore the
instaflation if needed.

There is a need to perform regular backups on the UNIX PC. To make this easier a special
account has been created called dumps. If you log into the UNIX computer with the username
of dumps no password will be asked for . A program will start and you will be guided through
the backup procedure. This process will require about four DAT tapes. This should be done on
a regular basis and if it is forgotten for a long period IPS IT Section will get a piece of email
warning that the backup has not been done.

As there are a lot of customised configuration files in the UNIX system these backup tapes are
invaluable in restoring the system if there is a problem.

¥e%

,gp_@ch

Handbook for Ionosonde Type 4B/D

5. IPS SCALING PROGRAM

Description of items on the scaling control panel.

STATIONS . .. ré’zwmb :
T el 7
RS
satfs
Jeadie)

e g

The leftmost item (labelled STATIONS) on the scaling display package is a scrolling list of
the available stations. The current station is selected by clicking with the left mouse button on
the station abbreviation, Stations are abbreviated to 5 letters. The first 3 usually denote the
station and the last 2 the type of ionosonde.

To the right of this is the date. It defaults to the current time on startup. The date can be
changed by clicking with left mouse button the up and down arrows associated with each
field. The date can also be modified by clicking on or after a number, backspacing, typing in a
new number and hitting enter.

The area on the control panel displays information about the current mode. The FREQ and
HEIGHT fields display the frequency and height at the point where the left mouse button was
clicked in the display.

Handbook for Ionosonde Type 4B/D

Now proceeding from left to right and top to bottom.
DISPLAY MODS brings up the display mods window. This window will be discussed later.

MISC is a menu button. The user opens the menu by clicking on MISC. The desired item is
selected by clicking on it. If there is an arrow to the right of a menu item then there is a
pullright menu associated with the item. Move the mouse right to bring up the menu.

EXIT - exits the applicatizon.

SAVE VALUES saves the scaled values for this day. Values are saved automatically when
the day or station changes.

FPLOT shows a graph of scaled parameters for the current day. The fplot window is
discussed below.

PREVIOUS will search for the previous ionogram in the current month.
NEXT will search for the next ionogram in the current month.

DEFAULTS selects whether to use parameter defaults when scaling. Defaults are supplied
when scaling of the current ionogram is finished, denoted by changing ionograms. When
selected this box will contain a tick.

-OK- +OK-+ are used when the scaler is checking autoscaled data. These buttons will only
work when the scale option is enabled. -OK- finds the previous ionogram, and marks the
current one as validated. +OK+ goes to the next ionogram and marks the current one as
validated.

SCALE selects whether you are scaling or just reviewing. Autoscaling will only work if
SCALE is set. When selected the box will contain a tick.

The following keys also perform the following actions:

‘a’ is the same as -OK-
‘b’ is the same as +OK+
‘w’ is minus 1 hour

‘e’ is plus 1 hour

Handbook for Ionosonde Type 4B/D

Description of Windows

Display Mods Window

The DISPLAY MODS window allows the user to modify certain aspects of the display
X-BLOAT and Y-BLOAT simply bloat the drawing pixel in the X and Y axis by the amount
selected using the increment/decrement arrows. Bloating only occurs when COLOUR AMPS
has been selected. O-THRESHOLD and X-THRESHOLD are only useful when the
ionogram contains amplitude information,

It is recommended the COLOUR AMPS is left off as the redraw of the screen is quite slow.

Fplot Window

=y e

st ek

1

Heirein

L0 CDE D 15 TN 203 (550 vl o v vol kol e b aal wh 1SE

The FPLOT window displays frequency versus time plot of the scaled foF2, foEs and fmin
values for the current ionogram date. A line joins the values which have an associated cleaned
ionogram. Because of its nature foEs values are not joined by lines. Values with no cleaned
ionogram appear as circles. At the top of the graph will be an arrow showing the time on the
ionogram display. Small squares at the top of the graph indicate the existence of a cleaned
ionogram. Clicking with the left mouse button on or near a square will change the currently

10

Handbook for Tonosonde Type 4B/D

displayed ionogram to the one at this time. The FPLOT window can be removed by clicking
on the FPLOT box, to remove the tick, on the main control panel.

Parameters Window

This window is the long rectangular window which appears when the scaling application is
started. It (as will all the windows) can be repositioned by clicking and holding down the left
mouse button while the pointer is on the border of the window. It can then be dragged to the
desired location. The window consists of a series of selectable buttons, each labelled with a
scalable parameter. If values exist for the current ionogram they will be displayed below the
appropriate button. When scaling the depressed button is the current parameter being scaled.
The parameter can be changed by clicking the left mouse button on the appropriate parameter
button, or the scaler can click the right mouse button while the pointer is in the display
window.

Left, Right and Pairs Qualifier/Descriptor Windows

11

Handbook for Ionosonde Type 4B/D

These windows are selected from the MISC menu and are used when scaling to add qualifiers
and descriptors to the parameters. Left and Right orientation are provided to minimise cursor
movement, The pairs window displays commonly used qualifier/descriptor pairs.

-

Configure Qual/Desc Pairs Window

toos

This window is used to change the qualifier/descriptor pairs. The pair to be changed is clicked
on using the left mouse button. The user then types in the new pair. Clicking on UPDATE
will add this change to all qualifier/descriptor windows. Clicking on SAVE will save this new
configuration to the users configuration file. Clicking on DONE will quit this window.

How To SCALE

First select the ionogram to be scaled using the increment/decrement arrows on the date fields,
or the next/previous buttons. Then make sure that the SCALE tick box has been ticked. The
DEFAULTS tick box may or may not be enabled. If enabled then default values will be
assigned to parameters when the user changes to another ionogram. These defaults are based
on the scaled parameters. Select the parameter to be scaled (see PARAMETER WINDOW).
Move the cursor to the desired spot on the ionogram and click the left mouse button.
Parameter values can be removed by clicking outside the ionogram display box. Qualifiers
and descriptors can be added and removed by using the Qualifier/Descriptor windows.

After all scaling has been completed the user should click on the SAVE VALUES button on
the control panel and click on the SCALE box to remove the tick.

12

Introduction to Unix

Frank G. Fiamingo

Linda DeBula

Linda Condron

University Technology Services

The Ohio State University

August 14, 1996

© 1996 Frank Fiamingo, Linda DeBula and Linda Condron, University Téchnology Services, The Ohio
State University, 406 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210.

All rights reserved. You may reproduce all or parts of this document for personal, non-commercial
use, so long as you attribute the work to the authors.

UNIX was a registered trademark of the X/Open Consortium, AT&T is a trademark of American
Telephone and Telegraph, Inc.

This publication is provided “as is” without warranty of any kind. This publication may include
technical inaccuracies or typographical errors.

The authors’ email addresses are;

Frank Fiamingo fiamingo.1 @osu.edu
Linda DeBula debula.2@osu.edu
Linda Condren condron.l @osu.edu

This document can be obtained via:
http://www-wks.uts.ohio-state.edu/unix_course/unix.html
or

ftp://fwww-wks.uts.ohio-state.edu/unix_course/unix_book.ps

2 ® 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Table of Contents

1 HiStory of ULEX uvciveeisvinirsncsnnsssnsssnnsssnrssnsssssssssessaesssnesssssssncssssnans
2 Unix Structure cnesasssnsssias Cereasessiessessesaseste b ases st aase e ateas
2.1 The Operating SYSLEIM ...ccecrververresesresnsssesessessrssnnsnssssssssssssnssansraens 9
2.2 The File SYStemM ..vviccesieersninsnessossssissnesssrosneorsssesssssssessissssnssssssese i1
2.3 Unix Directories, Files and IN0OAesccoververrevneeensnnrercnessrrenenns 12
2.4 Unix Programsceecoceceiiommiosismimeessssssessassssns i3
3 Getting Startedeeoeiinciimeiiinreiimeseossennasreeean.
31 LoggINg I cevveernrinssssnsesniesassesiosisnsensesssssssssssesssessesnsassennenss 14

3.1.1 Terminal TYPE .oooviiiiiieciitieieieie e 14

3.1.2 PasSWOIAS .ccoceieiveirreresecr e nae e 15

3,13 EXIUNE vorvveeieeeeneceee sttt et s e 15

314 Tdentity .oooeeconeiiieicetei et 16
3.2 Unix Command Line Structure ..., 16
3.3 Control Keys wiiiiciiimncerenesescssesvessesnasssessnsessessessrssssassses 17
3.4 stty < terminal control ... 17
35 Gething Help avcicecrirncisncinsnsnisnssnisnsonnonsossssaseseessssassrssssen 19
3.6 Directory Navigation and Control ... 20

3.6.1 pwd - print working directorycccoovevivnicrinerennn. 21

3.6.2 cd - change direCtory ...coeeeiceeeerieeevceeee e 21

3.6.3 mkdir - make a direCtoryovcvreeeruecoreerereseenennns 22

3.6.4 rmdir - remove direCtory ...ocovceveieeniieieniecer e, 22

3.6.5 Is-list directory CONENtS .oocoovveveeereesirecneerieeereieceee 23
3.7 File Maintenance Commandsuceneommmeneennierseseens 25

371 cp-copy afile i 26

372 mv-moveafile ... 26

373 mm-remove afile ..o 27

3.7.4 File Permissionsccccivieiiioarinnrenice e, 27

3.7.5 chmod - change file permissionscccoouvevreennn.e. 28

3.7.6 chown - change ownershipccocooevivieereeiveecn, 29

37777 chgrp - change groupcccvveeeiveiecreccc v 29
3.8 Display Commands ..o 30

3.8.1 echo-echo astatementcccevevvrevinnienrenieeseee 30

3.8.2 cat-concatenate a fileooooeeeriiieiieeicicicic 31

3.8.3 * more, less, and pg - page through afile 31

3.8.4 head - display the start of afileococoviivviiiciiin, 32

3.8.5 tail - display the end of a file ..ocooveeeereeericeeie 32

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

System Resources & Printingccceeeeevvennen. cesvesssareessrsesersansesaes 33

4.1 SYSLEIN RESOUICES ..ervrrrriricersarrsncaressessesnsssssressonsassressessasrersarsasesses 33

4.1.1 df - summarize disk block and file usage 34

4.1.2 du - report disk Space in USEcceoemrireireresrirenieresrnns 34

4.1.3 ps - show status of active processescoverveeuenne. 35

4.1.4 kill - terminate a ProCess ...cecvvveeveivivieesiesieiseesessenans 36

4.1.5 who - list CUITent USErS ..occvceerreeeieeereeceetecsee e 37

4.1.6 whereis - report program locationscccecevvnenns 37

4.1.7 which - report the command foundcoovvnnnne.n. 38

4.1.8 hostname/uname - name of machingcceeveveeenenen. 38

4.1.9 script - record your screen /O ..o 38

4.1.10 date - current date and tHMe ...cccoverevveveesie e 40
4.2 Print Commands ...c.coeionsnininne srersnnrerassrseasesnasssnsssssstronsesans 41

4.2.1 lp/lpr - submit a print Job eeoevceereiirie e, 41

4.2.2 lpstat/lpq - check the status of a print jobc........ 42

4.2.3 cancel/lprm - cancel a print Jobcooceeeieiiiriiiei e, 42

4.2.4 pr - prepare files for printingc.covecvveiencricnninnnen, 43
Shells cuvvveeisrencssscrscsnrenseesssesesssssosens rersrsssessssrssnrsrenaasesssnssnsanssansas 45
51 Built-in Commandseemmimiiniimmmmiesesssmsenss 46

ST Sh 46

5120 CSh o s 47
5.2 Environment Variables ... erntsnnennnesnsesnsssesaaseressensassrns 48
5.3 The Bourne Shell, Sh v, eeid9
5.4 The C Shell, €81t wiviviniininiiinniiiiniriiniiiioemmeneessesensisssssessessnnes 50
5.5 Job Control wiiiiiiniinciiiinsisnnsssissssssssssssssesesssnsnsenss 51
5.0 HESLOTY trreerccciireesscnssssssesesansssnssensssnssensessessassessssesnsrsnasssessssassassens 52
5.7 Changing your Shell . inissinissnisninisnnsisnissssnsnaseneas 54
Special Unix Features e 55 -
6.1 File DeSCriplors iieiciesnnisessssnesssssaosssssssessosssssossonsassanssass 55
6.2 Tile Redirection ...ceeeminecseonmssmmsossissimmseiessiosios corerenss IS

0.2.1 CSh e 56

0.2.2 SH oo 57
6.3 Other Special Command SYMDOIS wciniininionnioiiesiseseessees 58
0.4 Wild Cards .o, srmessressnssrasenassanse 58
Text Processing w.cesenesmscnsns resversraesesresessansssuneesssrtesbsanesnanaesraten 59
7.1 Regular EXpression SYNLaX .. SOV 59
7.2 Text Processing Commands ... R 61

T21 BIED i e 61

T.2.2 SEA oo 65

7.2.3 awk, nawk, gawk S 67

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

8 Other Useful Commandsccccivevisseniccnmsncnssnnenssnsnenssenaniieae 70
8.1 Working With Files ...ivivinninnnninmaimenninmsienisemsenimenen. 70
8.1.1 cmp - compare file contentsccvvvernnieiinicniionn 71
8.1.2 diff - differences in filesccocoveiiiiiiiinee 72
8.1.3 cut-selectparts of alineocooviiriiniiiiiicie 73
8.1.4 paste - merge files ..o 74
8.1.5 touch-create afilecovvvniivieinenne e 76
8.1.6 wc-count words in afile ..ccooovveiviieiiiiiiiiieeeeeiee 77
8.1.7 1In-link to another filecccooeviimnivirrceee e, 78
8.1.8 sort - sort file contentso.cooeeeiiiiiiiiiii 79
8.1.9 tee - copy command OULPULveveriveeruenirrrrreer e 32
8.1.10 uniq - remove duplicate Hnescveeveereniereneicrnnns 84
8.1.11 strings - find ASCII Strings ..oooceeveevvvvvesvnncerncviennn 85
8.1.12 file - 1l tYPE woveeererei et 86
8.1.13 tr - translate charactersococcvvvereeveeveevencreeneeee e, 80
8.1.14 find - find filesccccomvmviminri e 89
8.2 File Archiving, Compression and Conversionc.ceeeeuee... 91
8.2.1 TFile COmMPIESSION ...occoiriririeiireeeieeiere e 91
8.2.2 tar-archive files ... b eee et eaans 93
8.2.3 umencode/undecode - encode afile ..ooveeeeeeiiinnl 94
8.2.4 dd - block copy and convertccoeeeerieiieiiieeen 95
8.2.5 od-octal dumpof afilecococorvvvirreeieciierceeee 96
8.3 Remote Connectionscicicniessnssensisomiesesissnesceassssessses 98
8.3.1 TELNET and FTP - remote login and file transfer protocols 98
8.3.2 finger - get information about userscoeoeenin 100
8.3.3 Remote commandscocovvevemeeveerenreerieeceee e 101
9 Shell Programminguiirecercesceesenssarsssssnnesssssnseseesssesssssssessses 103
9.1 Shell SCriPts .ovvvvrvrrsnincnsieinienenisnimmmmoionsesssersemessssessesess 103
9.2 Setting Parameter VAIUEScoeivreereececercensnsnesnersorssnersssenseens 103
9.3 QUOLING ccrriisnsesssisissicssssssssesssansseessssssscsassesssasssssrsaseess L 04
9.4 Variables . 105
9.5 Parameter SubStHution ..., 107
9.6 Here DOCUMENL wvvvivcririeriseceorcessrescssesessssesesssensessessssssnssessonsrasnoss 169
9.7 Interactive INPUL ..ociicirenierrrereresierssnsessessesssssssssssessesesssnssens 110
D71 Sh e 110
972 CSh o 110
9.8 FUNCLIONS wrvrieersrnrerssrssssasscssessssonssessenesersensresesessessasessasessossasssessrs i1t
9.9 Control Commandsccecreeerrernsrreensresnesnersssressessessssesssaonsas 113
9.9.1 Conditional ifccoooiiiiieieicee e 113
D91 Sh e 113
0912 C8h oo 114
9.9.2 Conditional switch and casecoveevveveveervevennnn, 115
9921 8Sh i 115
9922 C8h i 116

Introduction to Unix

©® 1996 Frank Fiamingo, Linda DeBula, Linda Condron

9.9.3 for and Toreach oo eee e eeer e 117

D931 Sh e 117
0932Csh s 117
994 while .o 118
99.4.1Sh i SRR OOUSRUUURURRII 118
D942 CSh i 119
995 unt] o 119
D.9.6 850 1iriiiiiii ittt 120
9.9.7 C Shell Logical and Relational Operators 122
Editors ... cesseisssnnesetesanesssnsseratreseanesanas rearesseessinrsinesssssannen w123
10.1 Configuring Your vi Sessionwuicicmeenieemsosssssss 124
10.2 Configuring Your emacs SeSSiOnimiimciseseesessssssesserens 125
10.3 vi Quick Reference Guideeeereecnensesissensesnisensessssesrssssens 126
10.4 emacs Quick Reference GUIdeiiciiicernrenessensssrerssssesssnas 127
Unix Command Summarycceeeeceenena sessssseessessennassrassssnan 128
IL1 Unix Commandscccoisresessessssemsessssassssssssssssssasmesarnsssssnssasanes 128
A Short Unix Bibliographycecie. cranesssessesstassnntssessrresann 131
12.1 Highly Recommendedicnmmeineenimsesmansmnmsssasseens 131
12,2 ASSOTted OLHETS ..cocerrerirssnssicsisssnsossorssansissssssssssssssssensnsansersaeses 131

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

CHAPTER 1 History of Unix

1965 Bell Laboratories joins with MIT and General Electric in the development effort for the new
operating system, Multics, which would provide multi-user, multi-processor, and multi-level
(hierarchical) file system, among its many forward-looking features.

1969 AT&T was unhappy with the progress and drops out of the Multics project. Some of the Bell
Labs programmers who had worked on this project, Ken Thompson, Dennis Ritchie, Rudd Canaday,
and Doug Mcllroy designed and implemented the first version of the Unix File System on a PDP-7
along with a few utilities. It was given the name UNIX by Brian Kernighan as a pun on Multics.

1970,Jan 1 time zero for UNIX

1971 The system now runs on a PDP-11, with 16Kbytes of memory, including 8Kbytes for user
programs and a 512Kbyte disk.

Its first real use is as a text processing tool for the patent department at Bell Labs. That utilization
justified further research and development by the programming group. UNIX caught on among
programmers because it was designed with these features:

* programmers environment

« simple user interface

» simple utilities that can be combined to perform powerful functions

= hierarchical file system v

= simple interface to devices consistent with file format

« multi-user, multi-process system

» architecture independent and transparent to the user.

1973 Unix is re-written mostly in C, a new language developed by Dennis Ritchie. Being written in
this high-level language greatly decreased the effort needed to port it to new machines.

1974 Thompson and Ritchie publish a paper in the Communications of the ACM describing the
new Unix OS. This generates enthusiasm in the Academic community which sees a potentially great
teaching tool for studying programming systems development. Since AT&T is prevented from
marketing the product due to the 1956 Consent Decree they license it to Universities for educational
purposes and to commercial entities.

1977 There are now about 500 Unix sites world-wide.

Iniroduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 7

History of Unix

1980 BSD 4.1 (Berkeley Software Development)
1983 SunOS, BSD 4.2, SysV

1984 ‘There are now about 100,000 Unix sites running on many different hardware platforms, of
vastly different capabilities.

1988 AT&T and Sun Microsystems jointly develop System V Release 4 (SVR4). This would later
be developed into UnixWare and Solaris 2.

1993 Novell buys UNIX from AT&T
1994 Novell gives the name "UNIX" to X/OPEN

1995 Santa Cruz Operations buys UnixWare from Novell. Santa Cruz Operations and
Hewlett-Packard announce that they will jointly develop a 64-bit version of Unix.

1996 International Data Corporation forecasts that in 1997 there will be 3 million Unix systems
shipped world-wide.

8 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

The Operating System

CHAPTER 2 Unix Structure

2.1 The Operating System

Unix is a layered operating system. The innermost layer is the hardware that provides the services for
the OS. The operating system, referred to in Unix as the kernel, interacts directly with the hardware
and provides the services to the user programs. These user programs don’t need to know anything
about the hardware. They just need to know how to interact with the kernel and it’s up to the kernel
to provide the desired service. One of the big appeals of Unix to programmers has been that most
well written user programs are independent of the underlying hardware, making them readily portable
o new systems.

User programs interact with the kernel through a set of standard system calls. These system calls
request services to be provided by the kernel. Such services would include accessing a file: open
close, read, write, link, or execute a file; starting or updating accounting records; chan ging ownership
of a file or directory; changing to a new directory; creating, suspending, or killing a process; enabling
access to hardware devices; and setting limits on system resources.

Unix is a multi-user, multi-tasking operating system. You can have many users logged into a
system simultaneously, each running many programs. It’s the kernel’s job to keep each process and
user separate and to regulate access to system hardware, including cpu, memory, disk and other I/O
devices.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 9

Unix Structure

FIGURE 2.1

Unix System Structure

Programs

10

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

The File System

2.2 The File System

The Unix file system looks like an inverted tree structure. You start with the root directory, denoted
by /, at the top and work down through sub-directories underneath it.

FIGURE 2.2 Unix Fife Structure

bin dev etc lib tmp usr home

/! 7|

ttya cual ‘bin lib local

passwd group
sh date csh

condron frank lindadb

N

source mail bin
xntp traceroute

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron i1

Unix Structure

Each node is either a file or a directory of files, where the latter can contain other files and
directories. You specify a file or directory by its path name, either the full, or absolute, path name or
the one relative to a location. The full path name starts with the root, /, and follows the branches of
the file system, each separated by /, until you reach the desired file, e.g.:

/home/condron/source/xntp

A relative path name specifies the path relative to another, usually the current working directory that
you are at. Two special directory entries should be introduced now:

the current directory

the parent of the current directory

So if I'm at /home/frank and wish to specify the path above in a relative fashion I could use:

../condron/source/xntp

This indicates that I should first go up one directory level, then come down through the condron
directory, followed by the source directory and then to xntp.

2.3 Unix Directories, Files and Inodes

Every directory and file is listed in its parent directory. In the case of the root directory, that parent
is itself. A directory is a file that contains a table listing the files contained within it, giving file
names (o the inode numbers in the list. An inode is a special file designed to be read by the kernel to
learn the information about each file. It specifies the permissions on the file, ownership, date of
creation and of last access and change, and the physical location of the data blocks on the disk
containing the file.

The system does not require any particular structure for the data in the file itself. The file can be
ASCII or binary or a combination, and may represent text data, a shell script, compiled object code
for a program, directory table, junk, or anything you would like.

There’s no header, trailer, label information or EOI character as part of the file.

12 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Unix Programs

2.4 Unix Programs

A program, or command, interacts with the kernel to provide the environment and perform the
functions called for by the user. A program can be: an executable shell file, known as a shell script; a
built-in shell command; or a source compiled, object code file.

The shell is a command line interpreter. The user interacts with the kernel through the shell. You can
write ASCII (text) scripts to be acted upon by a shell.

System programs are usually binary, having been compiled from C source code. These are located in
places like /bin, fusr/bin, fusr/local/bin, /usr/uch, etc. They provide the functions that you normally
think of when you think of Unix. Some of these are sk, csh, date, who, more, and there are many
others.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 13

Getting Started

CHAPTER 3 Getting Started

3.1 Logging in

After connecting with a Unix system, a user is prompted for a login username, then a password. The
login username is the user's unique name on the system. The password is a changeable code known
only to the user. At the login prompt, the user should enter the username; at the password prompt,
the current password should be typed.

Note: Unix is case sensitive. Therefore, the login and password should be typed exactly as issued;
the login, at least, will normally be in lower case.

3.1.1 Terminal Type

Most systems are set up so the user is by defaunlt prompted for a terminal type, which should be set to
match the terminal in use before proceeding. Most computers work if you choose "vt100". Users
connecting using a Sun workstation may want to use "sun"; those using an X-Terminal may want to
use "xterms" or "xterm".

The terminal type indicates to the Unix system how to interact with the session just opened.

Should you need to reset the terminal type, enter the command:

setenv TERM <ferm type> - if using the C-shell (see Chapter 4.)
(On some systems, e.g. MAGNUS, it’s also necessary to type "unsetenv TERMCAP")
-or-

TERM=<ferm type>; export TERM - if using the Bourne shell (see Chapter 4.)

where <ferm type> is the terminal type, such as vt100, that you would like set.

14 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Logging in

3.1.2 Passwords

When your account is issued, you will be given an initial password. It is important {or system and
personal security that the password for your account be changed to something of your choosing. The
command for changing a password is "passwd". You will be asked both for your old password and to
type your new selected password twice. If you mistype your old password or do not type your new
password the same way twice, the system will indicate that the password has not been changed.

Some system administrators have installed programs that check for appropriateness of password (is it
cryptic enough for reasonable system security). A password change may be rejected by this program.

When choosing a password, it is important that it be something that could not be guessed -- either by
somebody unknown to you trying to break in, or by an acquaintance who knows you. Suggestions for
choosing and using a password follow:

Don't use a word (or words) in any language
use a proper name
use information that can be found in your wallet
use information commonly known about you (car license, pet name, etc)
use control characters. Some systems can't handle them
write your password anywhere
ever give your password to *anybody*
Do use a mixture of character types (alphabetic, numeric, special)
use a mixture of upper case and lower case
use at least 6 characters
choose a password you can remember
change your password often

make sure nobody is looking over your shoulder when you are entering your password

3.1.3 Exiting

AD - indicates end of data stream; can log a user off. The latter is disabled on mahy systems
AC - interrupt
logout - leave the system

exit - leave the shell

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 15

Getting Started

3.1.4 Identity

The system identifies you by the user and group numbers (userid and groupid, respectively)
assigned to you by your system administrator. You don’t normally need to know your userid or
groupid as the system translates username ¢ userid, and groupname <> groupid automatically. You
probably already know your username; it’s the name you logon with. The groupname is not as
obvious, and indeed, you may belong to more than one group. Your primary group is the one
assoctated with your username in the password database file, as set up by your system administrator.
Similarly, there is a group database file where the system administrator can assign you rights to
additional groups on the system.

In the examples below % is your shell prompt; you don’t type this in.
You can determine your userid and the list of groups you belong to with the id and groups
commands. On some systems id displays your user and primary group information, e.g.:
% id
uid=[101 (frank) gid=10(staff)
on other systems it also displays information for any additional groups you belong to:
% id
uid=1101(frank} gid=10(staff) groups=10(staff),5(operator),14(sysadmin),1 10(uts)
The groups command displays the group information for all the groups you belong to, e.g.:

% groups

staff sysadntin uts operator

3.2 Unix Command Line Structure

A command is a program that tells the Unix system to do something. It has the form:

command [oplions] [arguments)
where an argument indicates on what the command is to perform its action, usually a file or series of
files. An option modifies the command, changing the way it performs.

Commands are case sensitive. comumand and Command are not the same.

Options are generally preceded by a hyphen (-), and for most commands, more than one option can be
strung together, in the form:

command -{option]{option][option]
e.g.

Is -alR
will perform a long list on all files in the current directory and recursively perform the list through all
sub-directories.
For most commands you can separate the options, preceding each with a hyphen, e.g.:

command -optionl -option2 -option3

16 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Control Keys

as in:

Is-a-1-R
Some commands have options that require parameters. Options requiring parameters are usually
specified separately, e.g.:

Ipr -Pprinter3 -# 2 file
will send 2 copies of file to printer3.
These are the standard conventions for commands, However, not all Unix commands will follow the
standard. Some don’t require the hyphen before options and some won’t let you group options

together, i.e. they may require that each option be preceded by a hyphen and separated by whitespace
from other options and arguments.

Options and syntax for a command are listed in the man page for the command.

3.3 Control Keys

Control keys are used to perform special functions on the command line or within an editor. You
type these by holding down the Centrol key and some other key simultaneously. This is usually
represented as “Key. Control-S would be written as 8. With control keys upper and lower case are
the same, so *S is the same as *s. This particular example is a stop signal and tells the terminal to
stop accepting input. It will remain that way until you type a start signal, Q.

Control-U is normally the "line-kill" signal for your terminal. When typed it erases the entire input
line.

In the vi editor you can type a control key into your text file by first typing AV followed by the control
character desired, so to type “H into a document type *V/AH.

3.4 stty - terminal control

sity reports or sets terminal control options. The "tty" is an abbreviation that harks back to the days
of teletypewriters, which were associated with transmission of telegraph messages, and which were
models for early computer terminals.

For new users, the most important use of the sffy command is setting the erase function to the
appropriate key on their terminal. For systems programmers or shell script writers, the stty command
provides an invaluable tool for configuring many aspects of I/O conirol for a given device, including
the following:

- erase and line-kill characters

- data transmission speed

- parity checking on data transmission

- hardware flow control

- newline (NL) versus carriage return plus linefeed (CR-LF)

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 17

Getting Started

- interpreting tab characters
- edited versus raw input

- mapping of upper case to fower case

This command is very system specific, so consult the man pages for the details of the stfy command
on your systeni.

Syntax
stty [options]

Options
{(none) report the terminal seftings
all (or -a) report on all options
echoe - echo ERASE as BS-space-BS
dec set modes suitable for Digital Equipment Corporation operating systems (which
distinguishes between ERASE and BACKSPACE) (Not available on all systems)
kiil set the LINE-KILL character
erase set the ERASE character
intr set the INTERRUPT character
Examples

You can display and change your terminal control settings with the sty command. To display all (-a)
of the current line seftings:
%o stty -a
speed 38400 baud, 24 rows, 80 columns
parenb -parodd cs7 -cstopb -hupcl cread -clocal -crtscts
-ignbrk brkint ignpar ~parmirk -inpck istrip -inler -igner icrnl -incle
ixon -ixany -ixoff imaxbel _
isig iexten icanon -xcase echo echoe echok -echonl -noflsh -tostop
echoctl -echoprt echoke
opost -olcuc onler -ocrnl -onocr -onlret -ofill -ofdel
erase kill werase rprnt flush lnext susp intr quit stop eof
AH AU AW AR AD AV AZIAY AT M AS/AQ AD

You can change settings using sffy, e.g., to change the erase character from #? (the delete key) to ~H:
% stty erase "H

This will set the terminal options for the current session only. To have this done for you
automatically each time you login, it can be inserted into the .Jogin or .profile file that we’ll look at
fater.

i8 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Getting Help

3.5 Getting Help

The Unix manual, usually called man pages, is available on-line to explain the usage of the Unix
system and commands. To use a man page, type the command "man" at the system prompt followed

~ by the command for which you need information.

Syntax

man [options] command_name

Common Options

-k keyword list command synopsis line for all keyword matches
-M path path to man pages
-a show all matching man pages (SVR4)

Examples

You can use man to provide a one line synopsis of any commands that contain the keyword that you
want to search on with the "-k" option, e.g. to search on the keyword password, type:
% man -k password
passwd (5) - password file
passwd (1) - change password information

The number in parentheses indicates the section of the man pages where these references were found.
You can then access the man page (by default it will give you the lower numbmed entry, but you can
use a cominand line option to specify a different one) with:

% man passwd

PASSWD(1) USER COMMANDS PASSWD(1)
NAME
passwd - change password information
SYNOPSIS
passwd [-e login_shell] [userame]
DESCRIPTION

passwd changes (or sets} a user's passWord.

passwd prompts twice for the new password, without displaying

it. This is to allow for the possibility of typing mistakes.

Only the user and the super-user can change the user's password.
OFTIONS

-¢ Change the user's login shell.

Here we’ve paraphrased and truncated the output for space and copyright concerns.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 19

Getting Started

3.6 Directory Navigation and Control

The Unix file system is set up like a tree branching out from the root. The the root directory of the
system is symbolized by the forward slash (/). System and user directories are organized under the
root. The user does not have a root directory in Unix; users generally log into their own home
directory. Users can then create other directories under their home. The following table summarizes
some directory navigation commands,

TABLE 3.1

Navigation and Directory Control Commands

Command/Syntax

What it will do

cd [directory]

change directory

Is {options] [directory or file]

list directory contents or file permissions

mikdir [options] directory

make a directory

pwd

print working (current) directory

rmdir [options] directory

remove a directory

If you’re familiar with DOS the following table comparing similar commands might help to provide

the proper reference frame.

TABLE 3.2 Unix vs DOS Navigation and Directory Control Commands

Command Unix DOS

list directory contents Is dir

make directory mkdir md & mkdir

change direclory cd cd & chdir

delete {remove) direciory rmdir rd & roodir

return to user’s home directory cd cd\

location in path pwd cd

{present working directory)

20 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Directory Navigation and Control

3.6.1 pwd - print working directory

At any time you can determine where you are in the file system hierarchy with the pwd, print working
directory, command, e.g.:

% pwd

fhome/frank/sre

3.6.2 cd - change directory

You can change to a new directory with the ed, change directory, command. ¢d will accept both
absolute and relative path names.

Syntax
¢d [directory]
Examples
cd (also chdir in some shells) change directory
cd changes to user's home directory
ed/ changes directory to the system's root
cd ..) goes up one directory level
ed .. goes up two directory levels
cd full/path/name/from/root changes directory to absolute path named (note the leading slash)
cd path/from/current/location changes directory to path relative to current location (no leading
slash)
cd ~username/directory changes directory to the named username's indicated directory

(Note: the ~ is not valid in the Bourne shell; see Chapter 5.)

. Introduction to Unix ® 1996 Frank Fiamingo, Linda DeBula, Linda Condron 21

Getting Started

3.6.3 mkdir - make a directory

You extend your home hierarchy by making sub-directories underneath it. This is done with the
mkdir, make directory, command. Again, you specify either the full or relative path of the directory:

Syntax

mkdir [options] directory

Common Options

P create the intermediate (parent) directories, as needed
-m mode access permissions (SVR4). (We’ll look at modes later in this Chapter).
Examples

9% mkdir /home/frank/data

or, if your present working directory is /home/frank the following would be equivalent:

% mkdir data

3.6.4 rmdir - remove directory

A directory needs to be empty before you can remove it. If it’s not, you need to remove the files first.
Also, you can’t remove a directory if it is your present working directory; you must first change out
of it.
Syntax

rmndir directory
Examples
To remove the empty directory /home/frank/data while in /home/frank use:

% rmdir data

or

% rmdir /home/frank/data

22 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Directory Navigation and Control

3.6.5 Is - list directory contents

The command to list your directories and files is Is. With options it can provide information about the
size, type of file, permissions, dates of file creation, change and access.

Syntax
Is [options] [argument]
Common Options
When no argument is used, the listing will be of the current directory. There are many very useful

options for the Is command. A listing of many of them follows. When using the command, string the
desired options together preceded by "-".

- lists all files, including those beginning with a dot (.).
-d lists only names of directories, not the files in the directory
-F indicates type of entry with a trailing symbol:
directories /
sockets =
symbolic links @
executables *
-g displays Unix group assigned to the file, requires the ~I option (BSD only)

-or- on an SVR4 machine, e.g. Solaris, this option has the opposite effect

-L if the file is a symbolic link, lists the information for the file or directory the link
references, not the information for the link itself

-1 long listing: lists the mode, link information, owner, size, last modification (time). If
the file is a symbolic link, an arrow (-->) precedes the pathname of the linked-to file.

The mode field is given by the -1 option and consists of 10 characters. The first character is one of
the following:

CHARACTER IFENTRYIS A

d directory

- plain file

b block-type special file

c character-type special file
1 symbolic link

s socket

The next 9 characters are in 3 sets of 3 characters each. They indicate the file access permissions:
the first 3 characters refer to the permissions for the user, the next three for the users in the Unix
group assigned to the file, and the last 3 to the permissions for other users on the system.
Designations are as follows:

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 23

Getting Started

r read permission
w write permission
X execute permission

- no permission

There are a few less commonly used permission designations for special circumstances. These are
explained in the man page for Is.

Examples

To list the files in a directory:
% ls

demofiles frank linda

To list all files in a directory, including the hidden (dot) files try:
% ls-a

.cshre .history plan rhosts frank

.emacs Jogin profile demofiles finda

To get a long listing:

% ls -al
total 24
drwxr-sr-x 5 workshop acs 512 Jun 7 11:12
drwxr-xr-x 6 root sYys 512 May 25 09:59
—TWRY—Xr-X% L workshop acs 532 May 20 15:31 .cshrc
—rw-———— 1 workshop acs 525 May 20 21:29 .emacs
-rTwWw-—————-— 1 workshop acs 622 May 24 12:13 .history
~TWXL~XL—X 1 workshop acs 238 May 14 09:44 .login
— W T 1 workshop acs 273 May 22 23:53 .plan
-~ XTWXL—XY -X 1 workshop acs 413 May 14 09:36 .profile
— W ————— 1 workshop acs 49 May 20 20:23 .rhosts
drwx------ 2 workshop acs 512 May 24 11:18 demofiles
drwx------ 2 workshop écs 512 May 21 10:48 frank
Arwag=—— =~ = = 3 workshop acs 512 May 24 10:59 linda

24 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Maintenance Commands

3.7 File Maintenance Commands

To create, copy, remove and change permissions on files you can use the following commands.

TABLE 3.3 File Maintenance Commands
Command/Syntax What it will do

chgrp [options] group file change the group of the file

chimod foptions] file change {ile or directory access permissions

chown [options] owner file change the ownership of a file; can only be done by the superuser

cp [options] file! file2 copy filel into file2; file2 shouldn't already exist. This command creates
or overwrites file2.

my [options] filel file2 move file! into file2)

rm [options] file remove (delete) a file or directory (-r recursively deletes the directory
and its contents) (-i prompts before removing files)

If you're familiar with DOS the following table comparing similar commands might help to provide
the proper reference frame.

TABLE 3.4 Unix vs DOS File Maintenance Commands
Command Unix DOS
copy file cp copy
move file mv move {(not supported on all versions of DOS)
rename file mv rename & ren
delete (remove) file m erase & del
display file to screen
entire file | cat type
) one page at a time | more, less, pg type/p (not supported on all versions of DOS)

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 25

Getting Started

3.7.1 cp - copy a file

Copy the contents of one file to another with the ¢p command.

Syntax

¢p [options] old_filename new_filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)

-r recursively copy a directory
Examples

% cp old_filename new_filename
You now have two copies of the file, each with identical contents. They are completely independent

of each other and you can edit and modify either as needed. They each have their own inode, data
blocks, and directory table entries.

3.7.2 mv - move a file

Rename a file with the move command, mv.

Syntax

myv [options] old_filename new_filename

Common Options

-i interactive {prompt and wait for confirmaticn before proceeding)
-f don’t prompt, even when copying over an existing target file (overrides -i)
Examples

% mv old_filename new_filename

You now have a file called new_filename and the file old_filename is gone. Actually all you’ve
done is to update the directory table entry to give the file a new name. The contents of the file remain
where they were.

26 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Maintenance Comumands

3.7.3 rm - remove a file

Remove a file with the rm, remove, command.

Syntax

rm [options] filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)
-r recursively remove a directory, first removing the files and subdirectories
beneath it
-f don’t prompt for confirmation (overrides -1)
Examples

% rm old_filename

A listing of the directory will now show that the file no longer exists. Actually, all you’ve done is to
remove the directory table entry and mark the inode as unused. The file contents are still on the disk,
but the system now has no way of identifying those data blocks with a file name. There is no
command to "unremove" a file that has been removed in this way. For this reason many novice users
alias their remove command to be "rm -i", where the - option prompts them to answer yes or no
before the file is removed. Such aliases are normally placed in the .cshre file for the C shell; see
Chapter 5)

3.7.4 File Permissions

Each file, directory, and executable has permissions set for who can read, write, and/or execute it.
To find the permissions assigned to a file, the Is command with the -1 option should be used. Also,
using the -g option with "Is -I" will help when it is necessary to know the group for which the
permissions are set (BSD only).

When using the "Is «Ig" command on a file (Is -I on SysV), the output will appear as follows:
~TWXI~X~-~- user unixgroup size Month nn hh:mm filename

The area above designated by letters and dashes (-rwxr-x---) is the area showing the file type and
permissions as defined in the previous Section. Therefore, a permission string, for example, of
-rwxr-x--- allows the user (owner) of the file to read, write, and execute it; those in the unixgroup of
the file can read and execute it; others cannot access it at all.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 27

Getting Started

3.7.5 chmod - change file permissions

The command to change permissions on an item (file, directory, etc) is chmod (change mode). The
syntax involves using the command with three digits (representing the user (owner, u) permissions,
the group (g) permissions, and other (o) user's permissions) followed by the argument (which may
be a file name or list of files and directories). Or by using symbolic representation for the
permissions and who they apply to.

Each of the permission types is represented by either a numeric equivalent:

read=4, write=2, execute=1

or a single letter:
read=r, write=w, execute=x
A permission of 4 or r would specify read permissions. If the permissions desired are read and write,

the 4 (representing read) and the 2 (representing write) are added together to make a permission of 6.
Therefore, a permission setting of 6 would allow read and write permissions.

Alternatively, you could use symbolic notation which uses the one letter representation for who and
for the permissions and an operator, where the operator can be:

+ add permissions
- remove permissions

= set permissions
So to set read and write for the owner we could use "u=rw" in symbolic notation.

Syntax

chimod nnn {argument [ist] numeric mode

chmod [wholop[perm] [argument list] symbolic mode
where nnn are the three numbers representing wser, group, and other permissions, who is any of u, g,
o, or a (all) and perm is any of r, w, Xx. In symbolic notation you can separate permission

specifications by commas, as shown in the example below.

Common Options

~f force (no error message is generated if the change is unsuccessful)
-R recursively descend through the directory structure and change the modes
Examples

If the permission desired for filel is user: read, write, execute, group: read, execute, other: read,
execule, the command to use would be

chinod 755 filel or chmnod u=rwx,go=rx filel

28 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Maintenance Commands

Reminder: When giving permissions to group and ether to use a file, it is necessary to allow at least
execute permission to the directories for the path in which the file is located. The easiest way to do
this is to be in the directory for which permissions need to be granted:

chmod 711 . or chmod u=rw,+x . or chmod u=rwx,go=x .

where the dot (.) indicates this directory.

3.7.6 chown - change ownership

Ownership of a file can be changed with the chown command. On most versions of Unix this can
only be done by the super-user, i.e. a normal user can’t give away ownership of their files. chown is
used as below, where # represents the shell prompt for the super-user:

Syntax

chown {options] userf:group] file {SVR4)
chown [options) user|.group] file (BSD)

Common Options

-R recursively descend through the directory structure
-f force, and don’t report any errors
Examples

chown new_owner file

3.7.7 chgrp - change group

Anyone can change the group of files they own, to another group they belong to, with the chgrp
command.

Syntax
chgrp [options] group file

Common Options

-R recursively descend through the directory structure
-f force, and don’t report any errors
Examples

% chgrp new_group file

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron ’ 29

Getting Started

3.8 Display Commands

There are a number of commands you can use to display or view a file. Some of these are editors

which we will look at later. Here we will illustrate some of the commands normally used to display a
file.

TABLE 3.5 Bisplay Commands
Command/Syntax What it will do
cat [options] file concatenate (list) a file
echo [lext string) echo the text string to stdout
head [-number] file disf)iay the first 10 (or number of} lines of a file
more (or less or pg) [options] file page through a text file
tail [options] file display the last few lines (or parts) of a file

3.8.1 echo - echo a statement

The echo command is used to repeat, or echo, the argument you give it back to the standard output
device. It normally ends with a line-feed, but you can specify an option to prevent this.

Syntax

echo {siring]

Common Options

-n don’t print <new-line> (BSD, shell built-in)
‘e don’t print <new-line> (SVR4)
\On where n is the §-bit ASCII character code (SVR4)
\ tab (SVR4)
\f form-feed (SVR4)
\n new-line (SVR4)
\v vertical tab (SVR4)
Examples
% echo Hello Class or echo "Hello Class”

To prevent the line feed:

% echo -n Hello Class or echo "Hello Class \c¢"
where the style to use in the last example depends on the echo command in use.

The \x options must be within pairs of single or double quotes, with or without other string characters.

30 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Intreduction to Unix

Display Commands

3.8.2 cat - concatenate a file

Display the contents of a file with the concatenate command, cat.

Syntax

cat [options] [file]

Common Options

-n precede each line with a line number

-V display non-printing characters, except tabs, new-lines, and form-feeds

- display § at the end of each line (prior to new-line) (when used with -v option)
Examples

% cat filename

You can list a series of files on the command line, and caf will concatenate them, starting each in turn,
immediately after completing the previous one, e.g.:

% cat filel file2 file3

3.8.3 more, less, and pg - page through a file

more, less, and pg let you page through the contents of a file one screenful at a time. These may not
all be available on your Unix system. They allow you to back up through the previous pages and
search for words, etc. :

Syntax

more foptions] [-+/pattern] [filename]
less {options] [+/pattern] [filename]
pg [options] [+/pattern] [filename]

Options
more less pg Action
- -C -¢ clear display before displaying
-i ignore case
-W default default don’t exit at end of input, but prompt and wait
-lines -lines # of lines/screenful
+/pattern +/pattern +/pattern search for the pattern

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 31

Getting Started

Internal Controls

more displays (one screen at a time) the file requested
<space bar> to view next screen
<refurn> or <CR> to view one more line
q to quit viewing the file
h help
b go back up one screenful ‘
/word search for word in the remainder of the file
See the man page for additional options
less similar to more; see the man page for options
j4 the SVR4 equivalent of more (page)

3.8.4 head - display the start of a file
head displays the head, or start, of the file.

Syntax

head [options] file

Common Options

-n number number of lines to display, counting from the top of the file
-number same as above
Examples

T

By default hiead displays the first 10 lines. You can display more with the "-n number”, or

"-number" options, e.g., to display the first 40 lines:

% head -40 filename or head -n 40 filename

3.8.5 tail - display the end of a file
tail displays the tail, or end, of the file.

Syntax
tail Joptions] file
Common Options
-number number of lines to display, counting from the bottom of the file

Examples

The default is to display the last 10 lines, but you can specify different line or byte numbers, or a
different starting point within the file. To display the last 30 lines of a file use the -number style:

% tail -30 filename

32 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

System Resources

CHAPTER 4 System Resources &

Printing

4.1 System Resources

Commands to report or manage systern resources.

TABLE 4.1 System Resource Commands

Command/Syntax

What it will do

chsh (passwd -e/-s} username login_shell

change the user’s login shell {often only by the superuser)

date [options]

report the current date and time

df [options] [resource]

report the summary of disk blocks and inodes free and in use

du {options] [directory or file]

report amount of disk space in use+

hostname/uname

display or set (super-user only) the name of the current machine

kill [options] [-SIGNAL] [pid#] [%job]

send a signal to the process with the process id number (pid#) or job
control number (%n). The default signal is to kill the process.

man foptions]} command

show the manual (man) page for a command

passwd [options]

set or change your password

ps [options]

show status of active processes

script file

saves everything that appears on the screen to file until exit is executed

sty [options]

set or display terminal control options

whereis [options] command

report the binary, source, and man page Tocations for the command
named

which commeand

reports the path to the command or the shell alias in use

who or w

report who is logged in and what processes are running

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 33

System Resources & Printing

4.1.1 df - summarize disk block and file usage

df is used to report the number of disk blocks and inodes used and free for each file system. The
output format and valid options are very specific to the OS and program version in use.

Syntax

df [options] [resource]

Common Options

Examp

-1 focal file systems only (SVR4)
-k report in kilobytes (SVR4)
les

{unix prompt 1} df
Filesystem
/dev/sdla
/dev/sdlh
/dev/sdlg

/dev/sdla
/home/guardian

kbytes

20895
319055
637726
240111

peri:/usr/local/backup

/usr/local /backup

peri: /home/peri

15952573

726884

peri:/usr/spool/mail 192383

/var/spool/mail

peri:/acs/peri/2

4.1.2 du - report disk space in use

723934

used
19224
131293
348809
165489

976558

391188
1081

521604

avail capacity Mounted on

0
155857
225145

50611

780758

263007
172064

129937

102%
46%
61%
77%

56%

60%
1%

80%

du reports the amount of disk space in use for the files or directories you specify.

Syntax

Comm

du [options] [directory or file]

on Options

-a display disk usage for each file, not just subdirectories
-8 display a sumimary total only

-k report in kilobytes (SVR4)

/
/usr

/fusr/local

/home/peri

/acs/peri/2

34

©® 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

System Resources

Examples

{unix prompt 3} du

1
1
1
20
86

Jelm
SMail
fNews

Juc

{unix prompt 4} du -a uc

7
5
1
1
4
1

20

uc/unixgrep.txt
uc/editors.txt
uc/.emacs
uc/.exrc
uc/telnet.ftp
uc/uniq.tee.txt

uc

4.1.3 ps - show status of active processes

ps is used to report on processes currently running on the system. The output format and valid
options are very specific to the OS and program version in use.

Syntax

ps [options]

Common Options

BSD

=W

SVR4
-€ all processes, all users

| environment/everything

process group leaders as well

-1 long format
-U user user oriented report
-¢ even processes not executed from terminals
-f full listing

report first 132 characters per line

note -- Because the ps command is highly system-specific, it is recommended that you consult the
man pages of your system for details of options and interpretation of ps output.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 35

Systemn Resources & Printing

Examples

{unix prompt 5} ps
TIME

PID
15549
15588
15594
15595
15486
15598
15600

T
p0
p0
pC
jeld]
rl

STAT
Iw
Iw
Iw
Iw

S

pl T
1l R

0:
0:
:00
: 00
: 00
: 00
: 00

o O o O o

00
00

COMMAND.
-tcsh (tcesh)

man nice

sh -c less /tmp/manl5588
less /tmp/manl%588

-tcsh (tesh)

emacs unixgrep.txt

ps

4.1.4 kill -terminate a process

kill sends a signal to a process, usually to terminate it.

Syntax

kill [-signal] process-id

Common Options

-1

Examples

{unix prompt 9} kill -1
HUP INT QUIT ILL TRAP IOT EMT FPE KILL BUS SEGYV SYS PIPE ALRM TERM URG STOP
TSTP CONT CHLD TTIN TTOU 10 XCPU XF3Z VTALRM PROF WINCH LOST USR1 USR2

displays the available kill signals:

The -KILL signal, also specified as -9 (because it is 9th on the above list), is the most commonly
used kill signal. Once seen, it can’t be ignored by the program whereas the other signals can.

{unix prompt 10} kill -9 15599

[T + Killed

emacs unixgrep.ixt

36

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

System Resources

4,1.5 who - list current users

who reports who is logged in at the present time.

Syntax

who [am i]

Examples

beauty condron>who
wmtell teypl Apr 21 20:15
fhwalk ttyp2 Apr 21 23:21

(apple.acs.ohio~g)
{
stwang ttyp3 Apr 21 23:22 (127.93.25.8)
(
(
(

worf.acs.ohio-st)

david ttyp4d Apr 21 22:27
tgardner ttypb Apr 21 23:07
awallace ttypb Apr 21 23:00

alipl-61l.acs.ochi)
picard.acs.ohio-)
£s31l~4 . homenet.o)

gtl27 ttyp7 Apr 21 23:24 {(data.acs.ohio-st)
cechang ttyp8 Apr 21 23:32 {8lip3-10.acs.ohi)
condron ttypc Apr 21 23:38 (lcondron-mac.acs)
dgildman ttype Apr 21 22:30 (slip3-36.acs.ohi)
febetz ttvag2 Apr 21 21:12 (£t224~10.homenet.}

beauty condron>who am i

beauty!condron ttypc Apr 21 23:38 {lcondron-mac.acs)

4.1.6 whereis - report program locations

whereis reports the filenames of source, binary, and manual page files associated with command(s).

Syntax

whereis [options] command(s)

Common Options

-b report binary files only

-m report manual sections only

-5 report source files only
Examples

brigadier: condron [69]> whereis Mail
Mail: /usr/ucb/Mail fusr/lib/Mail.help /usr/lib/Mail.rc fust/man/man1/Mail.1

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron

37

System Resources & Printing

brigadier: condron [70]> whereis -b Mail
Mail: fusr/uch/Mail fusr/lib/Mail.help fust/lib/Mail.re

brigadier: condron [71]> whereis -m Mail
Mail: /usr/man/man1/Mail.1

4.1.7 which - report the command found

which will report the name of the file that is be executed when the command is invoked. This will be
the full path name or the alias that’s found first in your path.
Syntax

which command(s)

example--

brigadier: condron [73]> which Mail
fusr/uch/Mail

4.1.8 hostname/uname - name of machine
hostname (uname -n on SysV) reports the host name of the machine the user is logged into, e.g.:

brigadier: condron [91]> hostname

brigadier

uname has additional options to print information about system hardware type and software version.

4.1.9 script - record your screen I/O

script creates a script of your session input and output. Using the seripf command, you can capture
all the data transmission from and to your terminal screen until you exif the script program. This can
be useful during the programming-and-debugging process, to document the combination of things
you have tried, or to get a printed copy of it all for later perusal.

Syntax

script [-a] [file] <...> exit

Common Options

~a append the output to file
typescript is the name of the default file used by script.

You must remember to type exif to end your script session and close your typescript file.

38 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

System Resources

Examples
beauty condron>script
Script started, file is typescript

beauty condron>ps
PID TT STAT TIME COMMAND

23323 p8 & 0:00 -h -i (tcsh)
23327 p8 R 0:40 ps

18706 pa S 0:00 -tcsh (tcsh)
23315 pa T 0:00 emacs
23321 pa 8 0:00 script
23322 pa S 0:00 script

3400 pb I 0:00 -tesh (tcesh)

beauty condron>kill -9 23315
beauty condron>date

Mon Apr 22 22:29:44 EDT 18996
beauty condron>exit

exit

Script done, file is typescript

[1] + Killed enacs

beauty condron>»cat typescript
Script started on Mon Apr 22 22:28:36 1996
beauty condron>ps
PID TT STAT TIME COMMAND

23323 p8 S 0:00 -h -i (tcsh)
23327 p8 R 0:00 ps

18706 pa S G:00 -tesh {tcsh)
23315 pa T 0:00 emacs

23321 pa S 0:00 script
23322 pa S 0:00 script

3400 pb I 0:00 -tcsh (tesh)

beauty condron>kill -9 23315
beauty condron>date
Mon Apr 22 22:29:44 EDT 1996
beauty condron>exit

exit

script done on Mon Apr 22 22:30:02 1996

beauty condron>

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron

System Resources & Printing

date displays the current data and time. A superuser can set the date and time.

Syntax

4.1.10 date - current date and time

date [options] [+format]

Common Options

-u use Universal Time (or Greenwich Mean Time)
+format specify the output format
%a weekday abbreviation, Sun to Sat
%h month abbreviation, Jan to Dec
%o j day of year, 001 to 366
Tony <new-line>
Dot <TAB>
YDy last 2 digits of year, 00 to 99
%D MM/DD/YY date
% H hour, 00 to 23
FoM minute, 00 to 59
%S second, 00 to 59
%'T HH:MM:SS time
Examples

beauty condron>date

Mon Jun 10 09:01:05 EDT 1996

beauty condron>date ~u

Mon Jun 10 13:01:33 GMT 1996

beauty condron>date +%a%t%D
Mon 06/10/96

beauty condron>date "+%y:%j'

096:162

40 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Print Commands

4.2 Print Commands

TABLE 4.2 Printing Commands
Command/Syntax What it will do
Ipqg (Ipstat) [options] show the status of print jobs
Ipr (Ip) [options) file print to defined printer
Iprm (cancel) [options] remove a prinat job from the print queue
pr [options] [file] filter the file and print it on the terminal

The print commands allow us to print files to standard output (pr) or to a line printer (Ip/lpr) while
filtering the output. The BSD and SysV printer commands use different names and different options
to produce the same results: Ipr, Iprm, and Ipg vs Ip, cancel, and Ipstat for the BSD and SysV submit,
cancel, and check the status of a print job, respectively.

4.2.1 Ip/lpr - submit a print job

Ip and Ipr submit the specified file, or standard input, to the printer daemon to be printed. Each job is
given a unique request-id that can be used to follow or cancel the job while it’s in the queue.

Syntax

Ip [options] filename
Ipr {options] filename

" Common Options

Ip lpr function

-n number -#number number of copies

-t title -Ttitle title for job

-d destination -Pprinter printer name

- (default) copy file to queue before printing
(default) - don’t copy file to queue before printing
-0 option additional options, ¢.g. nobanner

Files beginning with the string "%!" are assumed to contain PostScript commands.-
Examples

To print the file ssh.ps:
% Ip ssh.ps
request id is Ip-153 (1 file(s))

This submits the job to the queue for the default printer, Ip, with the request-id Ip-153.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 41

System Resources & Printing

4.2.2 Ipstal/ipq - check the status of a print job

You can check the status of your print job with Ipstat or lpq.

Syntax

Ipstat [options]
Ipg [options] [job#] [username]

Common Options

Ipstat Ipg

i | (defaults to Ip)
-5

-t

-u [login-1D-list]

-y

-p printer_dest -Pprinter_dest

Exampies

% Ipstat

function

list system default destination
summarize print status

print all status information

user list

list printers known to the system

list status of printer, printer_dest

1p-153 frank 208068 Apr2915:14 onlp
4.2.3 cancel/lprm - cancel a print job

Any user can cancel only heir own print jobs.

Syntax

cancel [request-1D] [printer]

Iprm [options] [job#] fusername}

Common Options

cancel Iprm function
-Pprinter specify printer
- all jobs for user
-u [login-TD-ist] user list
Examples

To cance] the job submitted above:

% cancel lp-153

42 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Print Commands

4.2.4 pr - prepare files for printing

pr prints header and trailer information surrounding the formatied file. You can specify the number
of pages, lines per page, columns, line spacing, page width, etc. to print, along with header and trailer
information and how to treat <tab> characters.

Syntax
pr [options] file

Common Options

+page_number start printing with page page_number of the formatted input file
~column number of columns
-a modify -column option to fill columns in round-robin order
do double spacing
-e[char][gap] tab spacing
-h header_string header for each page
« lines lines per page
-t don’t print the header and trailer on each page
-w width width of page
Examples

The file containing the list of P. G. Wodehouse’s Lord Emsworth books could be printed, at 14 lines

per page (including 5 header and 5 (empty) trailer lines) below, where the -e option specifies the
<tab> conversion style:

% pr -1 14 -ed42 wodehouse

Apr 2% 11:11 1996 wodehouse emsworth_books Page 1

Something Fresh {1915] Uncle Dynamite [19481
Leave it to Psmith [1923)] Pigs Have Wings [1952]
Summer Lightning [1929] Cocktail Time [1958]

Heavy Weather {1933] Service with & Smile [1961]

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 43

System Resources & Printing

Apr 29 11:11 19%6 wodehouse_emsworth_books Page 2

Blandings Castle and Elsewhere [1935] Galahad at Blandings [1965]
Uncle Fred in the Springtime [1939] A Pelican at Blandings [1969]
Full Moon [1947] Sunset at Blandings [1977]

44

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix ‘

Print Commands

CHAPTER 5 Shells

The shell sits between you and the operating system, acting as a command interpreter, It reads your
terminal input and translates the commands into actions taken by the system. The shell is analogous
to command.com in DOS. When you log into the system you are given a default shell. When the shell
starts up it reads its startup files and may set environment variables, command search paths, and
command aliases, and executes any commands specified in these files.

‘The original shell was the Bourne shell, sh. Every Unix platform will either have the Bourne shell, or
a Bourne compatible shell available. It has very good features for controlling input and output, but is
not well suited for the interactive user. To meet the latter need the C shell, esh, was written and is now
found on most, but not all, Unix systems. It uses C type syntax, the language Unix is written in, but
has a more awkward input/output implementation. It has job control, so that you can reattach a job
running in the background to the foreground. It also provides a history feature which allows you to
modify and repeat previously executed commands,

The defauit prompt for the Bourne shell is $ (or #, for the root user). The default prompt for the C shell
is %.

Numerous other shells are available from the network. Almost all of them are based on either sk or
csh with extensions to provide job control to sk, allow in-line editing of commands, page through
previously executed commands, provide command name completion and custom prompt, etc. Some
of the more well known of these may be on your favorite Unix system: the Korn shell, &sh, by David
Korn and the Bourne Again SHell, bash, from the Free Software Foundations GNU project, both based
on sh, the T-C shell, fesh, and the extended C shell, eshe, both based on esh. Below we will describe
some of the features of sh and esh so that you can get started.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 45

Shells

5.1 Built-in Commands

The shells have a number of built-in, or native commands. These commands are executed directly in
the shell and don’t have to call another program to be run. These built-in commands are different for

the different shells.

5.1.1 Sh

For the Bourne shell some of the more commonly used built-in cominands are:

case
cd
echo
eval
exec
exit
export
for

if

pwd
read
set
test
trap
umask
unset
wait

while

null command

source {read and execute) commands from a file

case conditional loop

change the working directory (default is $HOME)

write a string to standard output

evaluate the given arguments and feed the result back to the shell
execute the given command, replacing the current shell

exit the current shell

share the specified environment variable with subsequent shells
for conditional loop

if conditional foop

print the current working directory

read a line of input from stdin

set variables for the shell

evaluate an expression as true or false

trap for a typed signal and execute commands

set a default file permission mask for new files

unset shell variables

wait for a specified process to terminate

while conditional loop

46

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Built-in Commands

5.1.2 Csh

alias

bg

ed

echo

eval

exec

exit

fg

foreach

gleb

history

if

jobs

kill

timit

logout

nice command
nohup command
popd

pushd

rehash
repeat
set
setenv
source
stop
switch
umask
unalias
unset
unseteny
wait

while

For the C shell the more commonly used built-in functions are:

assign a name to a function

put a job into the background

change the current working directory

write a string to stdout L
evaluate the given arguments and feed the result back to the shell
execute the given command, replacing the current shell

exit the current shell

bring a job to the foreground

for conditional loop . s
do filename expansion on the list, but no "\" escapes are honored
print the command history of the shell

if conditional loop

list or control active jobs

kil the specified process

set limits on system resources

terminate the login shell

lower the scheduling priority of the process, command

do not terminate command when the shell exits

pop the directory stack and return (o that directory

change to the new directory specified and add the cierent one to the 'd'i'rect'o'r'y
stack . : . _ o

recreate the hash table of paths to executable files

repeat a command the specified number of times

set a shell variable . .
set an environment variable for this and subsequent shells - '
source {read and execute) commands from a file

stop the specified background job

switch conditional loop _

set a default file permission mask for new fileg

remove the specified alias name '

unset shell variables

unset shell environment variables

wait for all background processes to terminate

while conditional loop

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron 47

Shells

5.2 Environment Variables

Environmental variables are used to provide information to the programs you use. You can have both
global environment and Jocal shell variables. Global environment variables are set by your login
shell and new programs and shells inherit the environment of their parent shell. Local shell variables
are used only by that shell and are not passed on to other processes. A child process cannot pass a
variable back to its parent process.

The current environment variables are displayed with the "env" or "printenv" commands. Some
COMIMON ONes are:

+ DISPLAY The graphical display to use, e.g. nyssa:0.0

+ EDITOR The path to your default editor, e.g. fusr/bin/vi

« GROUP Your login group, e.g. staff .

» HOME Path to your home directory, e.g. /home/frank

« HOST The hostname of your system, e.g. nyssa

« IFS Internal field separators, usually any white space (defaults to tab, space
and <newline>)

« LOGNAME The name you login with, e.g. frank

+ TATH Paths to be searched for commands, e.g. /usr/bin:/usr/ucb:/ust/local/bin

« PS1 The primary prompt string, Bourne shell only (defaults to $)

+ PS2 The secondary prompt string, Bourne shell only (defaults to >)

« SHELL The login shell you’re using, e.g. fusi/bin/csh

s TERM Your terminal type, e.g. xterm

+« USER Your username, e.g. frank

Many environment variables will be set automatically when you login. You can modify them or define
others with entries in your startup files or at anytime within the shell. Some variables you might want
to change are PATH and DISPLAY. The PATH variable specifies the directories to be automatically
searched for the command you specify. Examples of this are in the shell startup scripts below.

You set a global environment variable with a command similar to the following for the C shell:

% setenv NAME value
and for Bourne shell;

$ NAME=value; export NAME
You can list your global environmental variables with the env or printeny commands. You unset them
with the unsetenv (C shell) or unset (Bourne shell) commands.

To set a local shell variable use the sef command with the syntax below for C shell. Without options
set displays all the focal variables.

% set name=value
For the Bourne shell set the variable with the syntax:

$ name=value

The current value of the variable is accessed via the "$name", or "${name}", notation.

48 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

The Bourne Shell, sh

5.3 The Bourne Shell, sh

Sh uses the startup file .profile in your home directory. There may also be a system-widé startup file,
e.g. fete/profile. If so, the system-wide one will be sourced {executed) before your local one.

A simple .profile could be the following:

PATH=/usr/bin:/usrfuch:/usr/local/bin:. # set the PATH

export PATH # so that PATH is available to subshells
Set a prompt

PS1="{"hostname" “whoami™} " # set the prompt, default is "$"

functions

Is() { /bin/ls -sbF "$@";}
Q) { 1s -al "$@";}

Set the terminal type

stty erase “H # set Control-H to be the erase key

eval “tset ~Q -5 -m ":Ixterm” # prompt for the terminal type, assume xterm
#

umask 077

Whenever a # symbol is encountered the remainder of that line is treated as a comment. In the PATH
variable each directory is separated by a colon (z) and the dot (.) specifies that the current directory is
in your path. If the latter is not set it’s a simple matter to execute a program in the current directory
by typing:

Jprogram_name

It’s actually a good idea not to have dot (.) in your path, as you may inadvertently execute a program
you didn’t intend to when you ed to different directories.

A variable set in .profile is set only in the login shell unless you "export” it or source .profile from
another shell. In the above example PATH is exported to any subshells. You can source a file with
the built-in "." command of sh, i.e.:

. Jprofile
You can make your own functions. In the above example the function ! results in an "ls -al" being
done on the specified files or directories.
With s#ty the erase character is set to Control-H (*H), which is usually the Backspace key.

The #set command prompts for the terminal type, and assumes "xterm” if we just hit <CR>. This
command is run with the shell built-in, eval, which takes the result from the tset command and uses it
as an argument for the shell. In this case the "-s" option to tset sets'the TERM and TERMCAP
variables and exports them.

The last line in the example runs the umask command with the option such that any files or directories
you create will not have read/write/execute permission for group and other.

For further information about sk type “man sh" at the shell prompt.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 49

Shells

5.4 The C Shell, csh

Csh uses the startup files .cshre and .login. Some versions use a system-wide startup file, e.g.
fetc/csh.login. Your Jogin file is sourced (executed) only when you login. Your .cshre file is sourced
every time you star{ a csh, including when you login. It has many similar features to .profile, but a
different style of doing things. Here we use the sef or sefenv commands to initialize a variable, where
set is used for this shell and seteny for this and any subshells. The environment variables; USER,
TERM, and PATH, are automatically imported to and exported from the user, term, and path
variables of the csh. So sefeny doesn’t need to be done for these. The C shell uses the symbol, ~, to
indicate the user’s home directory in a path, as in ~/.eshre, or to specify another user’s login directory,

. as in ~username/.cshre.

Predefined variables used by the C shell include:

e argy The list of arguments of the current shell

« cwd The current working directory

« history Sets the size of the history list to save

+ home The home directory of the user; starts with $HOME

+ ignoreeof When set ignore EOF (*D) from terminals

« noclobber When set prevent output redirection from overwriting existing files

« noglob When set prevent filename expansion with wildcard pattern matching

» path The command search path; starts with $PATH

+ prompt Set the command line prompt (default is %)

« savehist number of lines to save in the history list to save in the .history file

« shell The full pathname of the current shell; starts with $SHELL

« status The exit status of the last command (O=normal exit, 1=failed
command)

¢+ term Your terminal type, starts with $TERM

» user Your username, starts with $USER

A simple .cshre could be:
set path=(/ust/bin fusrfucb /ust/local/bin ~/bin .)

set prompt = "{ *hostname"’ *whoami‘ [} "

set noclobber

set ignoreeof

set history=100 savehist=50

aliases

alias h history

alias Is "fasi/bin/ls -sbEF"

set the path

set the primary prompt; default is "%"

don’t redirect output to existing files

ignore EOF (D) for this shell

keep a history list and save it between logins

alias h to "history"
alias Is to "Is ~shF"

alias 1l 1s -al # alias H to "ls -sbFal" (combining these options with those for "Is" above)

alias cd “cd \!¥;pwd’ # alias cd so that it prints the current working directory after the change

umask 077

50 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Job Control

Some new features here that we didn’t see in .profile arc noclobber, ignoreeof, and history.
Noclobber indicates that output will not be redirected to existing files, while ignoreeof specifies that
EOF (*D) will not cause the login shell to exit and log you off the system.

With the history feature you can recall previously executed commands and re-execute them, with
changes if desired.

An alias allows you to use the specified alias name instead of the full command. In the "Is" example
above, typing "Is" will result in "/usr/bin/ls -sbF" being executed. You can tell which "Is" command
18 in your path with the built-in which command, i.e.:

which Is

Is: aliased to fusr/bin/ls -sbF
A simple .login could be:

.Jogin

stty erase "H # set Control-H to be the erase key

set noglob # prevent wild card pattern matching

eval ‘tset -Q -s -m " ?xterm’ ¢ # prompt for the terminal type, assume "xterm"
unset noglob # re-enable wild card pattern matching

Setting and unsetting noglob around fsef prevents it from being confused by any csh filename wild card
pattern matching or expansion.

Should you make any changes to your startup files you can initiate the change by sourcing the changed
file. For esh you do this with the built-in seurce command, i.e.:

source .cshrc
For further information about csh type "man esh" at the shell prompt.

5.5 Job Control

With the C shell, esh, and many newer shells including some newer Bourne shells, you can put jobs
into the background at anytime by appending "&" to the command, as with sh. After submitting a
command you can also do this by typing AZ (Control-Z) to suspend the job and then "bg" to put it into
the background. To bring it back to the foreground type "fg".

You can have many jobs running in the background. When they are in the background they are no
longer connected to the keyboard for input, but they may still display output to the terminal,
interspersing with whatever else is typed or displayed by your current job. You may want to redirect
I/O to or from files for the job you intend to background. Your keyboard is connected only to the
current, foreground, job.

The built-in jobs command allows you to list your background jobs. You can use the kill command to
kill a background job. With the %n notation you can reference the nth background job with either of
these commands, replacing n with the job number from the output of jebs. So kill the second
background job with "kill %2" and bring the third job to the foreground with "fg %3".

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 51

Shells

5.6 History

The C shell, the Korn shell and some other more advanced shells, retain information about the former
commands you’ve executed in the shell. How history is done will depend on the shell used. Here
we’ll describe the C shell history features.

You can use the history and savehist variables to set the number of previously executed commands
to keep track of in this shell and how many to retain between logins, respectively. You could put a
line such as the following in .cshre to save the last 100 commands in this shell and the last 50 through
the next login.

set history=100 savehist=50
The shell keeps track of the history list and saves it in ~/.history between logins.

' You can use the built-in Zistory command to recall previous commands, e.g. to print the last 10:

% history 10

52 cd workshop
53 Is

54 ed unix_intro
55 Is

56 pwd

57 date

5% w
59 alias

60 history

61 history 10

You can repeat the last command by typing !I:

% 1!
53 1s
54 cd unix_intro
55 1s
56 pwd
57 date
58 w
59 alias
60 history
61 history 10
62 history 10

52 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

History

You can repeat any numbered command by prefacing the number with a !, e.g.:

% 157
date

Tue Apr 9 09:55:31 EDT 1996

Or repeat a command starting with any string by prefacing the starting unique part of the string with a

leg.:
% !da
date

Tue Apr 9 09:55:31 EDT 1996

When the shell evaluates the command line it first checks for history substitution before it interprets
anything else. Should you want to use one of these special characters in a shell command you will
need to escape, or quote it first, with a \ before the character, i.e. \l. The history substitution
characters are summarized in the following table.

TABLE 5.4 C Shell History Substitution
Command Substitution Function
!t repeat last command
'n repeat command number n
Ln repeat command n from last
Istr repeat command that started with string str
12str? iepeat command with str anywhere on the line
17str? % select the first argument that had str in it
1 repeat the Iast command, generally used with a modifier
Y:n select the nth argument from the last command (n=0 is the command name)
Yin-m select the nth through mth arguments from the last command
tA select the first argument from the last command {(same as !:1)
b select the last argument from the last command
¥ select all arguments to the previous command
!m* select the nth through Jast arguments from the previous command
Lin- select the nth through next to last arguments from the previous command
AstrlAstr2A replace strl with str2 in its first occurrence in the previous command
In:sfstrl/str2/ substitute strl with str2 in its first occurrence in the nth command, ending witha g
substitute globally

Additional editing modifiers are described in the man page.

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

53

Shells

5.7 Changing your Shell

To change your shell you can usually use the "chsh" or "passwd -¢" commands. The option flag, here
-e, may vary from system to system (-s on BSD based systems), so check the man page on your system
for proper usage. Sometimes this feature is disabled. If you can’t change your shell check with your
System Administrator.

The new shell must be the full path name for a valid shell on the system. Which shells are available
to you will vary from system to system. The full path name of a shell may also vary. Normally,
though, the Bourne and C shells are standard, and available as:

/bin/sh

/bin/csh
Some systems will also have the Korn shell standard, normally as:

/bin/ksh
Some shells that are quite popular, but not normally distributed by the OS vendors are bash and tcsh.
‘These might be placed in /bin or a locally defined directory, e.g. /ust/local/bin or /opt/local/bin. Should
you choose a shell not standard to the OS make sure that this shell, and all login shells available on the
system, are listed in the file /ete/shells. If this file exists and your shell is not listed in this file the file
transfer protocol daemon, fipd, will not let you connect to this machine. If this file does not exist only
accounts with "standard” shells are allowed to connect via ftp.

You can always try out a shell before you set it as your default shell. To do this just type in the shell
name as you would any other command.

54 @ 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Descriptors

CHAPTER 6 Special Unix Features

One of the most important contributions Unix has made to Operating Systems is the provision of
many utilities for doing common tasks or obtaining desired information. Another is the standard way
in which data is stored and transmitted in Unix systems. This allows data to be transmitted to a file,
the terminal screen, or a program, or from a file, the keyboard, or a program; always in a uniform
manner. The standardized handling of data supports two important features of Unix utilities: 1/O
redirection and piping.

With output redirection, the output of a command is redirected to a file rather than to the terminal
screen. With input redirection, the input to a command is given via a file rather than the keyboard.
Other tricks are possible with input and output redirection as well, as you will see. With piping, the
output of a command can be used as input (piped) to a subsequent command. In this chapter we discuss
many of the features and utilities available to Unix users.

6.1 File Descriptors

There are 3 standard file descriptors:

+ stdin 0 Standard input to the program
+ stdout 1 Standard output from the program
« stderr 2 Standard error output from the program

Normally input is from the keyboard or a file. Output, both stdout and stderr, normally go to the
terminal, but you can redirect one or both of these to one or more files.

You can also specify additional file descriptors, designating them by a number 3 through 9, and
redirect 1/O through them.

6.2 File Redirection

Output redirection takes the output of a command and places it into a named file. Input redirection
reads the file as input to the command. The following table summarizes the redirection options.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 55

Special Unix Features

TABLE 6.1 File Redirection
Symbol Redirection
> output redirect
>! same as above, but overrides noclobber option of esh
>> append output
>>1 same as above, but overrides noclobber option on csh and creates the file if

it doesn’t already exist.

1 pipe output to another command

< input redirection

<<String read from standard input until "String” is encountered as the only thing on the line.
Also known as a "here document" (see Chapter 8).

<<\String same as above, but don’t allow shell substitutions

An example of output redirection is:

cat filel file2 > file3
The above command concatenates filel then file2 and redirects (sends) the output to file3, If file3
doesn't already exist it is created. If it does exist it will either be truncated to zero length before the
new contents are inserted, or the command will be rejected, if the noclobber option of the csh is set.
(See the ¢sh in Chapter 4). The original files, filel and file2, remain intact as separate entities.
Output is appended to a file in the form:

cat filel >> file2
This command appends the contents of filel to the end of what already exists in file2. (Does not
overwrite file2).

Input is redirected from a file in the form:

program < file
This command takes the input for program from file.

To pipe output to another command use the form:

command | command

This command makes the output of the first command the input of the second command.

6.2.1 Csh
>& file redirect stdout and stderr to file
>>& append stdout and stderr to file
& command pipe stdout and stderr to command

To redirect stdout and stderr to two separate files you need to first redirect stdout in a sub-shell, as in:

% (command > out_file) >& err_file

56 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Redirection

6.2.2 Sh
2> file direct stderr to file
> file 2>&1 direct both stdout and stderr o file
>> file 2> &1 append both stdout and stderr to file
2>&1 | command pipe stdout and stderr to command

To redirect stdout and stderr to two separate files you can do:

$ command 1> out_file 2> err_file

or, since the redirection defaults to stdout:

$ command > out_file 2> err_file

With the Bourne shell you can specify other file descriptors (3 through 9) and redirect output through
them. This is done with the form:

n>&m redirect file descriptor n to file descriptor m
We used the above to send stderr (2) to the same place as stdout (1), 2>&1, when we wanted to have
error messages and normal messages to go to file instead of the terminal. If we wanted only the error

messages to go to the file we could do this by using a place holder file descriptor, 3. We’ll first
redirect 3 to 2, then redirect 2 to 1, and finally, we’ll redirect 1 to 3:

$ (command 3>&2 2>&1 1>&3) > file

This sends stderr to 3 then to 1, and stdout to 3, which is redirected to 2. So, in effect, we’ve reversed
file descriptors 1 and 2 from their normal meaning. We might use this in the following example:

$ (cat file 3>&2 2>&1 1>&3) > errfile

So if file is read the information is discarded from the command output, but if file can’t be read the
error message is put in errfile for your later use.

You can close file descriptors when you’re done with them:

m<&- closes an input file descriptor
<&- closes stdin

m>&- closes an output file descriptor
>&- closes stdout

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 57

Special Unix Features

6.3 Other Special Command Symbols

In addition to file redirection symbols there are a number of other special symbols you can use on a
command line. These include:

.

&&

1

‘command’

#

command separator
run the command in the background

run the command following this only if the previous command completes
successfully, e.g.:
grep string file & & cat file

run the command following only if the previous command did not complete
successfully, e.g.:

grep string file Il echo "String not found."

the commands within the parentheses are executed in a subshell. The output
of the subshell can be manipulated as above.

fiteral quotation marks. Don’t allow any special meaning to any characters
within these quotations.

escape the following character (take it literally)

regular quotation marks. Allow variable and command substitation with
theses quotations (does not disable $ and \ within the string).

take the output of this command and substitute it as an argument(s) on the
command line

everything following until <newline> is a comment

The \ character can also be used to escape the <newline> character so that you can continue a long
command on more than one physical line of text.

6.4 Wild Cards

The shell and some text processing programs will allow meta-characters, or wild cards, and replace
them with pattern matches. For filenames these meta-characters and their uses are:

?

#®

[abe...]

[a-e]

[!def]
{abe,bed,cde}

~USser

match any single character at the indicated position

match any string of zero or more characters

match any of the enclosed characters

match any characters in the range a,b,c,d,e

match any characters not one of the enclosed characters, sh only

match any set of characters separated by comma (,) (no spaces), e¢sh only
home directory of the current user, csh only

home directory of the épecifiecl user, esh only

38 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron : Introduction to Unix

Regular Expression Syntax

CHAPTER 7 Text Processing

7.1 Regular Expression Syntax

Some (ext processing programs, such as grep, egrep, sed, awk and vi, let you search on patterns
instead of fixed strings. These text patterns are known as regular expressions. You form a regular
expression by combining normal characters and special characters, also known as meta-characters,
with the rules below. With these regular expressions you can do pattern matching on text data.
Regular expressions come in three different forms:

» Anchors
» Character sets
s Modifiers

Regular expression syntax is
accept some.

[abc]
[a-d]
[“exp]
Aabc

abc$

{n,m\}

\<abc\z

which tie the pattern to a location on the line
which match a character at a single position

which specify how many times to repeat the previous expression

as follows. Some programs will accept all of these, others may only

match any single character except <newline>

match zero or more instances of the single character (or meta-character)
immediately preceding it

match any of the characters enclosed

match any character in the enclosed range

match any character not in the following expression

the regular expression must start at the beginning of the line (Anchor)
the regular expression must end at the end of the line (Anchor)

treat the next character literally. This is normally used to escape the meaning
of special characters such as "." and "*",

match the regular expression preceding this a minimum number of n times
and a maximum of m times (0 through 255 are allowed for n and m). The \{
and \} sets should be thought of as single operators. In this case the \
preceding the bracket does not escape its special meaning, but rather turns on
anew one.

will match the enclosed regular expression as long as it is a separate word.
Word boundaries are defined as beginning with a <newline> or anything
except a letter, digit or underscore (_) or ending with the same or a end-of-line
character. Again the \< and \> sets should be thought of as single operators.

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron 59

Text Processing

(abcy) saves the enclosed pattern in a buffer. Up to nine patterns can be saved for
each line. You can reference these latter with the \n character set. Again the
\(and \) sets should be thought of as single operators.

\n where n is between 1 and 9. This matches the nth expression previously
saved for this line. Expressions are numbered starting from the left. The \n
should be thought of as a single operator.

& print the previous search pattern (used in the replacement string)

There are a few meta-characters used only by awk and egrep. These are:

+ match one or more of the preceding expression
? match zero or more of the preceding expression
I separator. Match either the preceding or following expression.

() group the regular expressions within and apply the match to the set.

Some examples of the more commonly used regular expressions are:

regular

expression matches

cat the string cat

.at any occurrence of a letter, followed by at, such as cat, rat, mat, bat, fat, hat
Ky*z any occurrence of an x, followed by zero or more y's, followed by a z.
Acat cat at the beginning of the line

cat$ cat at the end of the line

\E any occurrence of an asterisk

[cClat cat or Cat

[a-zA-Z] any occurreice of a non-alphabetic character

[0-9]% any line ending with a number '

[A-Z]A-Z]* one or more upper case letters

[A-Z]* zero or more upper case letters (In other words, anything.)

60 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Text Processing Commands

7.2 Text Processing Commands

TABLE 7.1 Text Processing Commands

Command/Syntax What it will do

awk/nawk [options] file | scan for patterns in a file and process the results

greplegrep/fgrep [options] 'search string' file search the argument (in this case probably a file) for all occurrences
of the search string, and list them.

sed [options] file stream editor for editing files from a script or from the command line

7.2.1 grep
This section provides an introduction to the use of regular expressions and grep.

The grep utility is used to search for generalized regular expressions occurring in Unix files. Regular
expressions, such as those shown above, are best specified in apostrophes (or single quotes) when
specified in the grep utility, The egrep utility provides searching capability using an extended set of
meta-characters. The syntax of the grep utility, some of the available options, and a few examples are
shown below.

Syntax
grep [options] regexp [file[s]]

Common Options

-i ignore case

-C report only a count of the number of lines containing matches, not the
matches themselves

-V invert the search, displaying only lines that do not match

-n display the line number along with the line on which a match was found

-8 work silently, reporting only the final status:

0, for match(es) found
1, for no matches
2, for errors

-1 list filenames, but not lines, in which matches were found

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 61

Text Processing

Examples

Consider the following file:

{unix prompt 5} cat num.list

o= B e - L B N VU S

e e e T]
L T L VS T

15
14
13
12

[l O I O SN SN B o

fifteen
fourteen
thirteen
twelve
eleven
ten
nine
eight
seven
six
five
four
three
two

one

Here are some grep examples using this file. In the first we’ll search for the number 15:

{unix prompt 6} grep '15" num.list

1
15

15
1

fifteen

one

Now we’ll use the "-¢" option to count the number of lines matching the search criterion:

{unix prompt 7} grep -c¢ '15" num.list

2

Here we’ll be a little more general in our search, selecting for all lines containing the character 1
followed by either of 1, 2 or 5:

{unix prompt 8} grep '1[125]' num.list

1
4
5
11
12
15

15
12
11
5
4
I

fifteen
twelve
eleven
five
four

one

62

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Text Processing Commands

Now we’ll search for all lines that begin with a space:

{unix prompt 9} grep '* ' num.list
1 15 fifieen

2 14 fourteen

3 13 thirteen
4 12 twelve

5 11 eleven

6 10 ten

7 9 nine

8 8 eight

9 7 seven

Or all lines that don’t begin with a space:

{unix prompt 10} grep '"M{*]’ num.list

10 6 six
11 5 five
12 4 four
13 3 three
14 2 two
15 1 one

The latter could also be done by using the -v option with the original search string, e.g.:

{unix prompt 11} grep -v '* ' num.list

10 6 six
11 5 five
12 4 four
13 3 three
14 2 two
15 1 one

Here we search for all lines that begin with the characters 1 through 9:

{unix prompt 12} grep '"*[1-9]' num.list

10 6 six
i1 5 five
12 4 four
13 3 three
14 2 two
15 1 one

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Text Processing

This example will search for any instances of ¢ followed by zero or more occurrences of e:

{unix prompt 13} grep 'te*' num.list

1 15 fifteen

2 14 fourteen
3 13 thirteen
4 12 twelve
6 10 ten

8 8 eight

i3 3 three

14 2 two

This example will search for any instances of t followed by one or more occurrences of e:

{unix prompt 14} grep 'tee® num.list

1 15 fifteen

2 14 fourteen
3 13 thirteen
6 10 ten

We can also take our input from a program, rather than a file. Here we report on any lines output by
the who program that begin with the letter 1.

{unix prompt 15} who | grep Al
Icondron ttyp0 Dec 102:41 {Icondron-pc.acs.)

- 64 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Text Processing Commands

7.2.2 sed

The non-interactive, stream editor, sed, edits the input stream, line by line, making the specified
changes, and sends the result to standard output.

Syntax

sed [options] edit_command [file]

The format for the editing commands are:

[address1[,address2]][function][arguments]

where the addresses are optional and can be separated from the function by spaces or tabs. The
function is required. The arguments may be optional or required, depending on the function in use.

Line-number Addresses are decimal line numbers, starting from the first input line and incremented
by one for each. If multiple input files are given the counter continues cumulatively through the files.
‘The last input line can be specified with the "$" character.

Context Addresses are the regular expression patterns enclosed in slashes (/).

Commands can have 0, 1, or 2 comma-separated addresses with the following affects:

of addresses lines affected

0 every line of input

1 only lines matching the address

2 first line matching the first address and all lines until, and including, the line
matching the second address. The process is then repeated on subsequent
lines.

Substitution functions allow context searches and are specified in the form:

s/regular_expression_pattern/replacement_string/flag

and should be quoted with single quotes (°) if additional options or functions are specified. These
patterns are identical to context addresses, except that while they are normally enclosed in slashes (/),
any normal character is allowed to function as the delimiter, other than <space> and <newline>.

The replacement string is not a regular expression pattern; characters do not have special meanings
here, except:

& substitute the string specified by regular_expression_pattern

\n substitute the nth string matched by regular_expression_pattern enclosed in
N, V)Y pairs.

These special characters can be escaped with a backslash (V) to remove their special meaning.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 65

Text Processing

Common Options

-¢ script edit script

-n don’t print the default output, but only those lines specified by p or s///p
functions

-f script_file take the edit scripts from the file, script_file

Valid flags on the substitution functions include:

d delete the pattern
g globally substitute the pattern
p print the line

Examples

This example changes all incidents of a comma (,) into a comma followed by a space (,) when doing
output:

% cat filey | sed s/,/\ /g

The following example removes all incidents of Jr preceded by a space (Jr) in filey:

% cat filey [sed s\ Ir//g

To perform multiple operations on the input precede each operation with the -e (edit) option and’

quote the strings. For example, to filter for lines containing "Date: " and "From: " and replace these
without the colon (2), try:

sed -e *s/Date: /Date /* -e *s/From: /From /’
To print only those lines of the file from the one beginning with "Date:" up to, and including, the one
beginning with "Name:" try:

sed -n '/"Date:/ /"Name:/p’

To print only the first 10 lines of the input (a replacement for head):

sed -n 1,10p

06 @ 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Text Processing Commands

7.2,.3 awk, nawk, gawk

awk is a pattern scanning and processing language. Its name comes from the last initials of the three
authors: Alfred. V. Aho, Brian. W. Kernighan, and Peter. J. Weinberger. nawk is new awk, a newer
version of the program, and gawk is gnu awk, from the Free Software Foundation. Bach version is a
little different. Here we’ll confine ourselves to simple examples which should be the same for all
versions. On some OSs awk is really nawk.

awk searches its input for patterns and performs the specified operation on each line, or fields of the
line, that contain those patterns. You can specify the pattern matching statements for awk either on
the command line, or by putting them in a file and using the -f program_file option.

Syntax

awk program [file]

where program is composed of one or more:

pattern { action }

fields. Each input line is checked for a pattern match with the indicated action being taken on a
match. This continues through the full sequence of patterns, then the next line of input is checked.

Input is divided into records and fields. The default record separator is <newline>, and the variable
NR keeps the record count. The default field separator is whitespace, spaces and tabs, and the
variable NF keeps the field count. Input field, F'S, and record, RS, separators can be set at any time to
match any single character. Output field, OFS, and record, ORS, separators can also be changed to
any single character, as desired. $n, where n is an integer, is used to represent the nth field of the
input record, while $0 represents the entire input record.

BEGIN and END are special patterns matching the beginning of input, before the first field is read,
and the end of input, after the last field is read, respectively.

Printing is allowed through the print, and formatted print, printf, statements.

Patterns may be regular expressions, arithmetic relational expressions, string-valued expressions,
and boolean combinations of any of these. For the latter the patterns can be combined with the
boolean operators below, using parentheses to define the combination:

] or

&& and

! not

Comma separated patterns define the range for which the pattern is applicable, e.g.:
ffirst/ /last/

selects all lines starting with the one containing first, and continuing inclusively, through the one
containing last.

Introduction to Unix ©® 1996 Frank Fiamingo, Linda DeBuia, Linda Condron 67

Text Processing

To select lines 15 through 20 use the pattern range:

NR == 15,NR ==20
Regular expressions must be enclosed with slashes (/) and meta-characters can be escaped with the
backslash (\). Regular expressions can be grouped with the operators:

l or, to separate alternatives

one or more

-Q..*.

ZEro or one

A regular expression match can be either of:

~ contains the expression

I~ does not contain the expression

So the program:
$1 ~ /[Ff]rank/

is true if the first field, $1, contains "Frank" or “frank" anywhere within the field. To match a field
identical to "Frank" or "frank"” use:

$1 ~ /A[Fflrank$/

Relational expressions are allowed using the relational operators:

< fess than

<= less than or equal to
== equal to

>= greater than or equal to

I= not equal to

> greater than

Offhand you don’t know if variables are strings or numbers. If neither operand is known to be
numeric, than string comparisons are performed. Otherwise, a numeric comparison is done. In the
absence of any information to the contrary, a string comparison is done, so that:

$1>9%2

will compare the string values. To ensure a numerical comparison do something similar to:

($1+0)>8%2

The mathematical functions: exp, log and sqrt are built-in.

68 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Text Processing Commands

Some other built-in functions include:

index(s,t) returns the position of string s where t first occurs, or 0 if it doesn’t
length(s) returns the length of string s
substr(s,m,n) retarns the n-character substring of s, beginning at position m

Arrays are declared automatically when they are used, e.g.:

arrfi] = $1
assigns the first field of the current input record to the ith element of the array.

Flow control statements using if-else, while, and for are allowed with C type syntax:

for (i=1; 1 <= NF; i++) {actions}
while (i<=NF) {actions}
if (i«<NF) {actions}

Common Options

-f program_file read the commands from program_file
-Fc use character ¢ as the field separator character
Examples

% cat filex | tr a-z A-Z | awk -F: '{printf ("7R %-6s %-9s %-24s \n",$1,$2,53) } >upload.file

cats filex, which is formatted as follows:

nfb791:99999999:smith

. 7ax791:999999999:jones
8ab792:99999999:chen
8aa791:999999999: menulty

changes all lower case characters to upper case with the #r utility, and formats the file into the
following which is written into the file upload.file:

7R NEB791 99999999 SMITH

7R TAX791 999999999 JONES

7R 8AB792 99999999 CHEN

TR 8AA791 999999999 MCNULTY

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 69

Other Useful Commands

CHAPTER $ Other Useful Commands

8.1 Working With Files

This section will describe a number of commands that you might find useful in examining and
manipulating the contents of your files.

TABLE 8.1 File utilities
Command/Syntax What it wiil do

cmp [options] filel file2 compare two files and list where differences occur (text or binary files)

cut {options] [file(s)] cut specified field(s)/character(s) from lines in file(s)

diff [options] filel file2 compare the two files and display the differences (text files only)

Jile [options] file classify the file type

Jind directory foplions] [actions)] find files matching a type or pattern

In [options] source_file target link the source_file to the target

paste [options] file paste field(s) onto the lines in file

sort [options] file sort the lines of the file according to the options chosen

strings [options] file report any sequence of 4 or more printable characters ending in <NL> or
<NULL>. Usually used to search binary files for ASCII strings.

fee [options] file copy stdout to one or more files

touch [options] [date] file create an empty file, or update the access time of an existing file

tr {options] string | string2 translate the characters in stringl from stdin into those in string?2 in stdout

uniqg {options] file | remove repeated lines in a file

we Joptions] [file(s)] display word (or character or line) count for file(s)

70 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Working With Files

8.1.1 cmp - compare file contents

The cmp command compares two files, and (without options) reports the location of the first
difference between them. It can deal with both binary and ASCII file comparisons. It does a
byte-by-byte comparison.
Syntax

cmp [options] filel file2 {skip1] [skip2]

The skip numbers are the number of bytes to skip in each file before starting the comparison.

Common Options

-1 report on each difference
-8 report exit status only, not byte differences
Examples

Given the files mon.logins:and tues.logins:

ageorge ageorge
bsmith chetts
chetts jchen
jchen jdoe
Jmarsch Jjmarsch
lkeres ikeres
mschmidt proy

! sphillip sphillip
wyepp wyepp

The comparison of the two files yields:

% cmp mon.logins tues.logins

mon.logins tues.logins differ: char 9, line 2
‘The default it to report only the first difference found.

This command is useful in determining which version of a file should be kept when there is more than
one version.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 71

Other.Useful Commands

8.1.2 diff - differences in files

The diff command compares two files, directories, etc, and reports all differences between the two. It
deals only with ASCII files. It’s output format is designed to report the changes necessary to convert
the first file into the second.

Syntax
diff [options] filel file2

Common Options

-b ignore trailing blanks

-i ignore the case of letters

-w ignore <space> and <tab> characters

e produce an output formatted for use with the editor, ed

-1 apply diff recursively through common sub-directories
Examples

For the mon.logins and tues.logins files above, the difference between them is given by:

% diff mon.logins tues.logins
2d1
< bsmith
4a4
> pdoe
77
< mschmidt

> proy

Note that the output lists the differences as well as in which file the difference exists. Lines in the
first file are preceded by "< ", and those in the second file are preceded by "> ".

72 © 1996 Frank Fiamingo, Linda DeBula, I.inda Condron Introduction to Unix

Working With Files

8.1.3 cut - select parts of a line

""""" : The cut command allows a portion of a file to be extracted for another use.

Syntax

cut [options] file

Common Options

-c¢ character_list character positions to select (first character is 1)

-d delimiter
-f field_list

field delimiter (defaults to <TAB>)
fields to select (first field is 1)

Both the character and field lists may contain comma-separated or blank-character-separated
numbers (in increasing order), and may contain a hyphen (-) to indicate a range. Any numbers
missing at either before (e.g. -5) or after (e.g. 5-) the hyphen indicates the full range starting with the
first, or ending with the last character or field, respectively. Blank-character-separated lists must be
enclosed in quotes. The field delimiter should be enclosed in quotes if it has special meaning to the
shell, e.g. when specifying a <space> or <TAB> character.

Examples

In these examples we will use the file users:

jdoe

Ismith
schen

jhsu

sphilip

John Doe 4/15/96
Laura Smith 3/12/96
Paul Chen 1/5/96
Jake Hsu 4/17/96
Sue Phillip 4/2/96

If you only wanted the username and the user's real name, the cut command could be used to get only

that information:

% cut -f 1,2 users

jdoe
lsmith
pchen
jhsu
sphilip

John Doe
Laura Smith
Paul Chen
Take Hsu
Sue Phillip

Introductien to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron 73

Other Useful Commands

The cut command can also be used with other options. The -c option allows characters to be the ™ "
selected cut. To select the first 4 characters:

% cut -¢ 1-4 users

This yields:
jdoe
lsmi
pche
jhsu
sphi

thus cutting out only the first 4 characters of each line,

8.1.4 paste - merge files

The paste command allows two files to be combined side-by-side. The default delimiter between the
columns in a paste is a tab, but options allow other delimiters to be used.

Syntax
paste [options] filel file2

Common Options

-d list list of delimiting characters

-8 concatenate lines

The list of delimiters may include a single character such as a comma; a quoted string, such as a
space; or any of the following escape sequences:

\n <newline> character

\t <tab> character

A\l backslash character

\O empty string (non-null character)

It may be necessary to quote delimiters with special meaning to the shell.

A hyphen (-) in place of a file name is used to indicate that field should come from standard input.

74 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Working With Files

Examples

Given the file users:

jdoe John Doe
Ismith Lauora Smith
pchen Paul Chen
jhsu Jake Hsu
sphilip Sue Phillip

and the file phone:

John Doe 555-6634
Laura Smith 555-3382
Paul Chen 555-0987
Jake Hsu 555-1235
Sue Phillip 555-7623

the paste command can be used in conjunction with the ¢uf command to create a new file, listing, that
includes the username, real name, last login, and phone number of all the users. First, extract the
phone numbers into a temporary file, temp.file:

% cut -f2 phone > temp.file
555-6634
555-3382
555-0987
555-1235
555-7623

The result can then be pasted to the end of each line in users and directed to the new file, listing:

% paste users temp.file > listing

jdoe John Doe
Ismith Laura Smith
pchen Paul Chen
jhsu Jake Hsu
sphilip Sue Phiilip

4/15/96
3/12/96
1/5/96
4/17/96
42196

4/15/96
3/12/96
1/5/96
4/17/96
4/2/96

237-6634
878-3382
888-0987
545-1235
656-7623

‘This could also have been done on one line without the temporary file as:

% cut -f2 phone | paste users - > listing

with the same results. In this case the hyphen (-) is acting as a placeholder for an input field (namely,

the output of the cut command).

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Other Useful Commands

8.1.5 touch - create a file

The touch command can be used to create a new (empty) file or to update the last access date/time on
an existing file. The command is used primarily when a script requires the pre-existence of a file (for
example, to which to append information) or when the script is checking for last date or time a

function was performed.

Syntax

touch [options] [date_time] file

touch [options] [-t time] file

Common Options

-a

-t time

change the access time of the file (SVR4 only)

don’t create the file if it doesn’t already exist

force the touch, regardless of read/write permissions
change the modification time of the file (SVR4 only)
use the time specified, not the current time (SVR4 only)

When setting the "-t time" option it should be in the form:
[[CCIYYIMMDDhhmm[.SS]

where:

CC
YY
MM
DD
hh
mm
SS

first two digits of the year
second two digits of the year
month, 01-12

day of month, 01-31

hour of day, 00-23

minute, 00-59

second, 00-61

The date_time options has the form:

MMDDhhmm[Y Y]

where these have the same meanings as above.

The date cannot be set to be before 1969 or after January 18, 2038.

Examples

To create a file:

% touch filename

76

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Working With Files

8.1.6 wc - count words in a file

we stands for "word count"; the command can be used to count the number of lines, characters, or
words in a file.

Syntax

we {options] file

Common Options

- count bytes

-m count characters (SVR4)
-1 count lines

-w count words

If no options are specified it defaults to "-Iwc".
Examples

Given the file users;

jdoe John Doe 4/15/96
Ismith - Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

the result of using a we command is as follows:

Y% we users
5 20 121 users

The first number indicates the number of lines in the file, the second number indicates the number of
words in the file, and the third number indicates the number of characters.

Using the we command with one of the options (-1, lines; -w, words; or -¢, characters) would result in
::::: - only one of the above. For example, "we - users" yields the following result:

5 users

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 77

Other Useful Commands

8.1.7 In - link to another file

The In command creates a "link" or an additional way to access (or gives an additional name to)
another file.

Syntax

In foptions] source [target]
If not specified target defaults to a file of the same name in the present working directory.

Commeon Options

-f force a link regardless of target permissions; don’t report errors (SVR4 only)
-§ make a symbolic link
Examples

A symbolic link is used to create a new path to another file or directory. If a group of users, for
example, is accustomed to using a command called chkmag, but the command has been rewritten and
1s now called chkit, creating a symbolic link so the users will automatically execute chkit when they
enter the command chkmag will ease transition to the new command.

A symbolic link would be done in the following way:

% In -s chkit chkmag

The long listing for these two files is now as follows:

16 -rwxr-x--- 1 lindadb acs 15927 Apr 23 04:10 chkit
1 lrwxrwxzrwx 1 lindadb acs 5 Apr 23 04:11 chkmag -> chkit

Note that while the permissions for chkinag are open to all, since it is linked to chkit, the permissions,
group and owner characteristics for chkit will be enforced when chkmag is run.

With a symbolic link, the link can exist without the file or directory it is linked to existing first.

A hard link can only be done to another file on the same file system, but not to a directory (except by
the superuser). A hard link creates a new directory entry pointing to the same inode as the original
file. The file linked to must exist before the hard link can be created. The file will not be deleted until
all the hard links to it are removed. To link the two files above with a hard link to each other do:

% In chkit chkmag

Then a long listing shows that the inode number (742) is the same for each:

% ls -1l chkit chkmag
TL2 ~rwxr-x—--- 2 lindadb acs 15927 Apr 23 04:10 chkit
742 —-rwxr-x--- 2 lindadb acs 15927 Apr 23 04:10 chkmag .

78 © 1996 Frank Fiamingo, Linda DeBulz, Linda Condron Introduction to Unix

Working With Files

8.1.8 sort - sort file contents

The sorf command is used to order the lines of a file. Various options can be used to choose the order
as well as the field on which a file is sorted. Without any options, the sort compares entire lines in the
file and outputs them in ASCI order (numbers first, upper case letters, then lower case letters).

Syntax
sort {options] [+pos] [-pos2 1] file

Common Options

-b ignore leading blanks (<space> & <tab>) when determining starting and
ending characters for the sort key

-d dictionary order, only letters, digits, <space> and <tab> are significant

-f fold upper case to lower case

-k keydef sort on the defined keys (not available on all systems)

-i ignore non-printable characters

-n numeric sort

-0 outfile output file

-r reverse the sort

-t char use char as the field separator character

-u unique; omit multiple copies of the same line (after the sort)

+posl [-pos2} (old style) provides functionality similar to the "-k keydef" option.

For the +/-position entries pos1 is the starting word number, beginning with 0 and pos2 is the ending
word number. When -pos2 is omitted the sort field continues through the end of the line. Both pos1
and pos2 can be written in the form w.c, where w is the word number and ¢ is the character within the
word. For ¢ 0 specifies the delimiter preceding the first character, and 1 is the first character of the
word. These entries can be followed by type modifiers, e.g. n for numeric, b to skip blanks, etc.

The keydef field of the "-k" option has the syntax:
start_field [type] [,end_field [type]]

where:

start_field, end_field define the keys to restrict the sort to a portion of the line

type modifies the sort, valid modifiers are given the single characters (bdfiMnr)
from the similar sort options, e.g. a type b is equivalent to "-b”, but applies
only to the specified field

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 79

Other Useful Commands

Examples

In the file users:

jdoe
1smith
pchen
Jhsu
sphilip

John Doe
Laura Smith
Paul Chen
Jake Hsu
Sue Phillip

sort users yields the following:

jdoe
jhsu
Ismith
pchen

sphilip

John Doe
Jake Hsu
Laura Smith
Panl Chen
Sue Phillip

4/15/96
3/12/96
1/5/96
4/17/96
4/2/96

4/15/96
4/17/96
3/12/96
1/75/96
4/2/96

If, however, a listing sorted by last name is desired, use the option to specify which field to sort on
(fields are numbered starting at 0):

% sort +2 users:

pchen
jdoe
jhsu
sphilip

Ismith

Paul Chen
John Doe
Jake Hsu
Sue Phillip

Laura Smith

To sort in reverse order:

% sort -1 users:

sphilip
pchen
Ismith
jhsu
jdoe

Sue Phillip
Paul Chen
Laura Smith
Jake Hsu
John Doe -

1/5/96
4/15/96
4/17/96
4/2/96
3/12/96

4/2/96
1/5/96
3/12/96
4/17/96
4/15/96

30

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Working With Files

A particularly useful sort option is the -u option, which eliminates any duplicate entries in a file while
ordering the file. For example, the file todays.logins:

sphillip
jchen
jdoe
Ikeres
jmarsch
ageorge
Ikeres
proy
jchen

shows a listing of each username that logged into the system today. If we want to know how many
unique users logged into the system today, using sort with the -u option will list each user only once.
(The command can then be piped into "we -I" to get a number):

% sort -u todays.logins

ageorge

jchen

jdoe

Jjmarsch

lkeres

proy

sphillip

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 81

Other Useful Commands

8.1.9 tee - copy command output

fee sends standard in to specified files and also to standard out. It’s often used in command pipelines.

Syntax
tee [options] [file[s]]

Common Options

-a append the output to the files
-i ignore interrupts
Examples

In this first example the output of whe is displayed on the screen and stored in the file users.file:

brigadier: condron [55]> who | tee users.file
condron ttypl Apr 22 14:10 (lcondron-pc.acs.)}
frank ttypl Apr 22 16:19 (nyssa)
condron ttyp9 Apr 22 1%5:52 (lcondron-mac.acs)

brigadier: condron [56]> cat users.file

condron ttypl Apr 22 14:10 (lcondron-pc.acs.)
frank ttypl Apr 22 16:19 (nyssa)
condron ttyp9 Apr 22 15:52 (lcondron-mac.acs)

In this next example the output of whe is sent to the files users.a and wsers.b. It is also piped to the
we command, which reports the line count.

brigadier: condron [57]> who | tee users.a users.b | wc -1
3

brigadier: condron [58]> cat users.a

condron tiypl Apr 22 14:10 {lcondron-pc.acs.)
frank ttypl Apr 22 16:19 {nyssa)
condron ttyp? Apr 22 15:52 {lcondron-mac.acs)

brigadier: condron [59]> cat users.b

condron ttypl Apr 22 14:10 (lcondron-pc.acs.)
frank ttypl Apr 22 16:19% (nyssa)
condron ttyp9 Apr 22 15:52 (lcondron-mac.acs)

82 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Working With Files

In the following example a long directory listing is sent to the file files.long. It is also piped to the
grep command which reports which files were last modified in August.

brigadier: condron {60]> ls -1 | tee files.long |grep Aug

1 drwxr-sr-x 2 condron 512 Aug 8 1995 News/
2 -~rw-r--r-- 1 condron 1076 Aug 8 1995 magnus.cshrc
2 -rw-r--r-- 1 condron 1252 Aug 8 1995 magnus.login

brigadier: condron (63]> cat files.long

total 34

2 —xw-r--r-- 1 condron 1253 Oct 10 1995 #.login#

1 drwx------ 2 condron 512 Oct 17 1995 Mail/

1 drwxr-sr-x 2 condron 51L2 Aug 8 1995 News/

5 -rw-x~-r-- 1 condron 4299 Apr 21 00:18 editors.txt

2 ~rw-r--r-- 1 condron 1076 Aug 8 1995 magnus.cshre
VVVVV 2 -rw-r--r—-- 1 condron 1252 Aug 8 1995 magnus.login

7 -rw-r--r-- 1 condron 6436 Apr 21 23:50 resources.txt

4 ~rw-r--r—-- 1 condron 3094 Apr 18 18:24 telnet.ftp

1 drwxr-sr-x 2 condron 512 Apr 21 23:56 uc/

1l ~rw-r--r-- 1 condron 1002 Apr 22 00:14 unig.tee.txt

1 -rw-r--r-- 1 condron 1001 Apr 20 15:05 uniqg.tee.txi~

7 ~rw-r--r-- 1 condron 6194 Apr 15 20:18 unixgrep.txt

introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 83

Other Useful Commands

8.1.10 uniq - remove duplicate lines

uniq filters duplicate adjacent lines from a file.

Syntax

uniq [options] [+-n] file [file.new]

Common Options

~-d one copy of only the repeated lines
-u select only the lines not repeated
+n ignore the first n characters
51 same as above (SVR4 only)
-n skip the first n fields, including any blanks (<space> & <tab>)
-f fields same as above (SVR4 only)
Examples

Consider the following file and example, in which unig removes the 4th line from file and places the
result in a file called file.new.
{unix prompt 1} cat file
1236
4536
7890
7890
funix prompt 2} uniq file file.new
{unix prompt 3} cat file.new
1236
4536
7890

Below, the «n option of the unig command is used to skip the first 2 fields in file, and filter out lines
which are duplicates from the 3rd field onward.
{unix promipt 4} uniq -2 file
1236
7890

84 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Working With Files

8.1.11 strings - find ASCII strings

To search a binary file for printable, ASCII, strings use the sfrings command. It searches for any
sequence of 4 or more ASCII characters terminated by a <newline> or null character. [find this
command useful for searching for file names and possible error messages within compiled programs
that I don’t have source code for.

Syntax

strings [options] file

Common Options

-n number use number as the minimum string length, rather than 4 (SVR4 only)
-number same as above
-t format precede the string with the byte offset from the start of the file, where format
is one of: d = decimal, o = octal, x = hexadecimal (SVR4 only)
-0 precede the string with the byte offset in decimal (BSD only)
Examples

% strings /bin/cut

SUNW_OST_OSCMD
no delimiter specified
invalid delimiter
b:c:d:fins
cut: -n may only be used with -b
cut: -d may only be used with -f
cut: -s may only be used with -f
no list specified
cut: cannot open %s
invalid range specifier
too many ranges specified

ranges must be increasing

: invalid character in range
Internal error processing input
invalid multibyte character
unable to allocate enough memory
unable to allocate enough memory
cut;
usage: cut -b list [-n] [filename ...]

cut -c list {filename ...]
cut -f list [-d delim] [-s] [filename]

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 85

Other Useful Commands

8.1.12 file - file type

This program, file, examines the selected file and tries to determine what type of file it is. It does this
by reading the first few bytes of the file and comparing them with the table in /etc/magic. It can
determine ASCII text files, tar formatted files, compressed files, etc.

Syntax
file [options] [-m magic_file] [-F file_list] file

Common Options

-C check the magic file for errors in format

-f file_list file_list contains a list of files to examine

-h don’t follow symbolic links (SVR4 only)

-L follow symbolic links (BSD only)

-m magic_file use magic_file as the magic file instead of /etc/magic
Examples

Below we list the output from the command "file filename" for some representative files.

/etc/magic: ascii text

fusr/local/bin/gzip: Sun demand paged SPARC executable dynamically linked

fasr/bin/cut: ELF 32-bit MSB executable SPARC Version 1, dynamically linked, stripped
source.tar: USTAR tar archive
source.tar.Z: compressed data block compressed 16 bits

8.1.13 tr - translate characters

The tr command translates characters from stdin to stdout.
Syntax
tr [options] stringl [string?2]

With no options the characters in stringl are translated into the characters in string2, character by
character in the string arrays. The first character in stringl is translated into the first character in
string2, etc.

A range of characters in a string is specified with a hyphen between the upper and lower characters of
the range, e.g. to specify all lower case alphabetic characters use ’[a-z] .

Repeated characters in string2 can be represented with the '[x*n]’ notation, where character x is
repeated n times. If nis 0 or absent it is assumed to be as large as needed to match stringl.

86 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Working With Files

Characters can include \octal

is replaced by the one, two,

"character" can be one of:
b

< = = O ™

(BSD and SVRA4) and \character (SVR4 only) notation. Here "octal”
or three octal integer sequence encoding the ASCII character and

back space
form feed

new line
carriage return
tab

vertical tab

The SVR4 version of #r allows the operand ":class:" in the string field where class can take on
character classification values, including:

alpha
lower
upper

Common Options

Examples

alphabetic characters
lower case alphabetic characters
upper case alphabetic characters

complement the character set in stringl
delete the characters in stringl
squeeze a string of repeated characters in stringl to a single character

The following examples will use as input the file, a list of P. G. Wodehouse Jeeves & Wooster books.

The Inimitable Jeeves [1923] The Mating Season [1949]

Carry On, Jeeves [1925] Ring for Jeeves {1953]

Very Good, Jeeves [1930] Jeeves and the Feudal Spirit [1954]
Thank You, Jeeves [1934] Jeeves in the Offing [1960]

Right Ho, Jeeves [1934] Stiff Upper Lip, Jeeves [1963]

The Code of the Woosters [1938] Much Obliged, Jeeves [1971]

Joy in the Morning [1946] Aunts Aren't Gentlemen [1974]

To translate all lower case alp
tr’fa-z]’ ’[A-Z)

habetic characters to upper case we could use either of:

or tr’[:lower:]’ "Lupper:]’

Intreduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron 87

Other Useful Commands

Since #r reads from stdin we first caf the file and pipe the output to ¢, as in:

% cat wodehouse | tr "[a-z]" "[A-Z]
THE INIMITABLE JEEVES [1923]
CARRY ON, JEEVES [1925]
VERY GOOD, JEEVES [1930]
THANK YOU, JEEVES [1934]
RIGHT HO, JEEVES [1934]
THE CODE OF THE WOOSTERS [1938]
JOY IN THE MORNING [1946]

We could delete all numbers with:

% cat wodehouse | tr -d ’[0-9)’
The Inimitable Jeeves []
Carry On, Jeeves []

Very Good, Jeeves []

Thank You, Jeeves []

Right Ho, Jeeves []

The Code of the Woosters {]
Joy in the Morning []

THE MATING SEASON [1949]

RING FOR JEEVES [1953]

JEEVES AND THE FEUDAL SPIRIT [1954]
JEEVES IN THE OFFING [1960]

STIFF UPPER LIP, JEEVES [1963]

MUCH OBLIGED, JEEVES [1971]

AUNTS AREN'T GENTLEMEN [1974]

The Mating Season {]

Ring for Jeeves []

Jeeves and the Feudal Spirit []
Jeeves in the Offing []

Stff Upper Lip, Jeeves []
Much Obliged, Jeeves []

Aunts Aren't Gentlemen []

To squeeze all multiple occurrences of the characters e, r, and f:

% cat wodehouse | tr -5 "ert’
The Inimitable Jeves [1923]
Cary On, Jeves [1925]
Very Good, Jeves [1930]
Thank You, Jeves [1934]
Right Ho, Jeves [1934]
The Code of the Woosters [1938]
Joy in the Morning [1946]

The Mating Season [1949]

Ring for Jeves [1953]

Jeves and the Feudal Spirit [1954]
Jeves in the Ofing [1960]

Stif Upper Lip, Jeves [1963]
Much Obliged, Jeves [1971]
Aunts Aren't Gentlemen [1974]

88

©@ 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Working With Files

8.1.14 find - find files

The find command will recursively search the indicated directory tree to find files matching a type or
pattern you specify. find can then list the files or execute arbitrary commands based on the results.

Syntax

Jind directory [search options] [actions]

Common Options

For the time search options the notation in days, n is:

+n
n
-1t

more than n days
exactly n days
less than n days

Some file characteristics that find can search for are:

time that the file was last accessed or changed

-atime n

-ctime n

-mtime n
-newer filename
-type type

b

=R 0

f
-fstype type

-user username
-group groupname
-perm [-]mode
~exec command

-name filename

~ls
-print

access time, true if accessed n days ago

change time, true if the files status was changed n days ago
modified time, true if the files data was modified n days ago
true if newer than filename

type of file, where type can be:

block special file

character special file

directory

symbolic link

named "pipe (fifo)

reguiar file

type of file system, where type can be any valid file system type, e.g.: ufs
(Unix File System) and nfs (Network File System)

true if the file belongs to the user username
true if the file belongs to the group groupname

permissions on the file, where mode is the octal modes for the ehmod
command. When mode is precede by the minus sign only the bits that are set
are compared.,

execute command. The end of command is indicated by and escaped
semicolon (\;). The command argument, {}, replaces the current path name.

true if the file is named filename. Wildcard pattern matches are allowed if
the meta-character is escaped from the shell with a backslash (\).

always true. It prints a long listing of the current pathname.
print the pathnames found (default for SVR4, not for BSD)

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron 89

Other Useful Commands

Complex expressions are allowed. Expressions should be grouped within parenthesis (escaping the
parenthesis with a backslash to prevent the shell from interpreting them). The exclamation symbol ()
can be used to negate an expression. The operators: -a (and) and -0 (or) are used to group
expressions.

Examples

find will recursively search through sub-directories, but for the purpose of these examples we will
just use the following files:

14 -rw-r—-r—- 1 frank staff 6682 Feb 5 10:04 library

6§ —r——r-———- 1 frank staff 3034 Mar 16 1995 netfile
34 -rw-r--r-- 1 frank staff 17351 Feb 5 10:04 standard
2 —TwWXIr-Xr-x 1 frank staff 386 Apr 26 09:51 tr25*

To find all files newer than the file, library:

% find . -newer library -print
./tr25

./standard

To find all files with general read or execute permission set, and then to change the permissions on
those files to disallow this:

% find . \{ -perm -004 -0 -perm -001 \) -exec chmod o-rx {}\; -execIs-al {};

—rW-r————— 1 frank staff 6682 Feb 5 10:04 ./library
WY -X——— 1 frank staff 386 Apr 26 09:51 ./tr2as
-rw-r-—-—--- 1 frank staff 17351 Feb 5 10:04 ./standard

In this example the parentheses and semicolons are escaped with a backslash to prevent the shell from
interpreting them. The curly brackets are automatically replaced by the results from the previous
search and the semicolon ends the command.

We could search for any file name containing the string "ar" with:

% find . -name VFar* -Is
326584 T W I e e 1 frank staff 6682 Feb 5 10:04 ./library

326585 17 -rw-r---—-—-— 1 frank staff 17351 Feb 5 10:04 ./standard

where the -Is option prints out a long listing, including the inode numbers.

90 ® 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Archiving, Compression and Conversion

8.2 File Archiving, Compression and

Conversion
TABLE 8.2 File Archiving, Compression and Conversion Commands
Command/Syntax _ What it will do

compress/uncompress/zeat foptions] filef.Z] compress or uncompress a file, Compressed files are stored witha |7,
ending.

dd [if=infile} fof=outfile] [operand=value] copy a file, converting between ASCII and EBCDIC or swapping
byte order, as specified

gzip/gunzipizeat [options] filef.gz] compress or uncompress a file. Compressed files are stored with a
gz ending

od [options] file octal dump a binary file, in octal, ASCII, hex, decimal, or character
mode.

tar key{options] [file(s)] tape archiver--refer to man pages for details on creating, listing, and
retrieving from archive files, Tar files can be stored on tape or disk.

uudecode [file] decode a uuencoded file, recreating the original file

nuencode [file] new_name encode binary file to 7-bit ASCIT, useful when sending via email, to

be decoded as new_name at destination

8.2.1 File Compression

The compress command is used to reduce the amount of disk space utilized by a file. When a file has
been compressed using the compress command, a suffix of .Z is appended to the file name. The
ownership modes and access and modification times of the original file are preserved. uncompress
restores the files originally compressed by compress.

Syntax

compress [options] [file]
uncompress [options] [file.Z]
zeat [file.Z]

Common Options

-« write to standard output and don’t create or change any files

-f force compression of a file, even if it doesn’t reduce the size of the file or if
the target file (file.Z) already exists.

-V verbose. Repott on the percentage reduction for the file.

zeat writes 1o standard output. It is equivalent to "uncompress -c".

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 91

Other Useful Commands

Examples

Given the files:

acs
acs
acs

acs

96 -rw-r--r-- 1 lindadb
184 -rw-r—--r-- 1 ilindadb
152 -rw-r--vr—- 1 lindadb
168 —-rw-r——I=~-~ 1 lindadb
These can be compressed with:
% compress logins.*
which creates the {iles:
24 -rw-r--1-—-— 1 lindadb acs
40 ~rw-r--1r-- 1 lindadb acs
24 -rw-r--r—- 1 lindadb acs
32 ~rw-r--r—- 1 lindadb

The original files are lost.

acs

45452 Apr 24 09:13 logins.beauty
90957 Apr 24 09:13 logins.bottom
75218 Apr 24 09:13 logins.photon
85970 Apr 24 09:13 logins.top

8486 Apr 24 09:13 logins.beauty.?
16407 Apr 24 09:13 logins.bottom.Z
10909 Apr 24 09:13 logine.photon.?
16049 Apr 24 09:13 logins.top.Z

To display a compressed file, the zeat command is used:

% zcat logins.beauty.Z | head

beauty:01/22/94:#total logins, 4338 #different UIDs,2290
beauty:01/23/94:#total logins, 1 864 #different UIDs, 1074
beauty:01/24/94 #total logins,2317:#different UlDs,1242
beauty:01/25/94:#total logins,3673:#different UlDs,2215
beauty:01/26/94:#total logins,3532:#different UlDs,2216
beauty:01/27/94:#total logins,3096:#different UIDs, 1984
beauty:01/28/94:#total logins,3724#different UlDs,2212
beauty:01/29/94:#total logins,3460:#different UlDs,2161
beauty:01/30/94:#total logins,1408#different UlDs,922

beauty:01/31/94:#total loging, 2175 #different UlDs, 1194

A display of the file using commands other than zcat yields an unreadable, binary, output.

The uncompress command is used to return the file to its original format:

% uncompress logins.*.Z ; Is -als logins.*

96 -rw-r--r-- 1 lindadb
184 -rw-r--r—- 1 lindadb
i52 —-rw-r--r-- 1 lindadb

168 -rw-r--r-- 1 lindadb

acs
acs
acs

acs

45452 Apr 24 09:13 logins.beauty
90957 Apr 24 09:13 logins.bottom
75218 Apr 24 (9:13 logins.photon
85970 Apr 24 09:13 logins.top

92 ®© 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Archiving, Compression and Conversion

In addition to the standard Unix compress, uncompress, zcat utilities there are a set of GNU ones
freely available. These do an even better job of compression using a more efficient algorithm. The
GNU programs to provide similar functions to those above are often installed as gzip, gunzip, and
zeat, respectively. Files compressed with gzip are given the endings .z or .gz. GNU software can be
obtained via anonymous ftp from ftp://prep.ai.mit.edu/pub/gnu.

8.2.2 tar - archive files

The tar command combines files into one device or filename for archiving purposes. The tar
command does not compress the files; it merely makes a large quantity of files more manageable.

Syntax

tar [options] [directory file]

Common Options

create an archive (begin writting at the start of the file)
table of contents list

extract from an archive

verbose

archive file name

=2 N T L]

archive block size

far will accept its options either with or without a preceding hyphen (-). The archive file can be a disk
file, a tape device, or standard input/output. The latter are represented by a hyphen.

Examples

Given the files and size indications below:

45 logs.beanty
89 logs.bottom
74 logs.photon
84 logs.top

tar can combine these into one file, logfile.tar:

% tar -cf logfile.tar logs.* ; ls -s logfile.tar
304 logfile.iar

Many anonymous FTP archive sites on the Internet store their packages in compressed tar format, so
the files will end in .tar.Z or .tar.gz. To extract the files from these files you would first uncompress
them, or use the appropriate zcat commang and pipe the output into tar, e.g.:

% zeat archive.tar.Z | tar -xvf -

where the hyphen at the end of the far command indicates that the file is taken from stdin.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 93

Other Useful Commands

To encode a binary file into 7-bit ASCII use the nuencode command. To decode the file back to
binary use the uudecode command. Thé um in the names comes because they are part of the
Unix-to-Unix CoPy (UUCP) set of commands.
commonly used when sending binary files through e-mail. In e-mail there’s no guarantee that 8-bit
binary files will be transferred cleanly. So to ensure delivery you should encode the binary file, either
directly, on the command line and then include the encoded file, or indirectly, by letting your MIME

8.2.3 uuencode/uudecode - encode a file

The uuencode and undecode commands are

mailer program do it for you. In a similar manner, the user decodes the file on the receiving end.

Syntax

nuencode [source_file] pathname_to_uvudecode_to [> new_file]

undecode | -p] encoded_file

Common Options

-p send output to standard output, rather than to the default file

Examples

The first line of encoded file includes the permission modes and name that uudecode will use when
decoding the file. The file begins and ends with the begin and end keywords, respectively, e.g.:

begin 555 binary_filename

M?T5,1@$" 0 "(L%'W #05'< T
MIOH4% 8 T $- "@ H 4 P
M -0 S S SRS B 7

M%P 10A< % $ § 4(8 -"& W& W% <0
M @!10B T(@)@ P O=7-R+VQIBB]L9"YS
M;RXQ < 'Y VP "O VP)8 &6 !GO

M % U0 %G 13 < #Q %Q |
MEP P I_ '@ PP (P

M NO=H 0 $D Y < #F /L
MOl § $ & | PHOA@ 4(8
M" I 0 IE @ ,T@ %"()@ $
M 0 (;@ $ '-"NI0K@ /H

M $ # ' | P#] 4:@ #8 !

M Y 0 ,TH %* =X 0

M@ @ # /X 13" "E, $ 4 !
M 4> 0 0o " P

© %0P)@ $

end

94

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

File Archiving, Compression and Conversion

8.2.4 dd - block copy and convert
The dd command allows you to copy from raw devices, such as disks and tapes, specifying the input
and output block sizes. dd was originally known as the disk-to-disk copy program. With dd you can
also convert between different formats, for example, EBCDIC to ASCIL, or swap byte order, etc.
Syntax

dd [if=input_device] [ef=output_device] [operand=value]

Common Options
if=input_device the input file or device

of=output_device the output file or device

If the input or output devices are not specified they default to standard input and standard output,
respectively,

Operands can include:

ibs=n input block size (defaults to 512 byte blocks)

obs=n output block size (defaunlts to0 512 byte blocks)
bs=n sets both input and output block sizes
files=n copy n input files
skip=n skip n input blocks before starting to copy
count=n only copy n input blocks
conv=value[,value] where value can include:
ascii convert EBCDIC to ASCII
ebedic convert from ASCII to EBCDIC
lease convert upper case characters to lower case
ucase convert lower case characters to upper case
swab swap every pair of bytes of input data
noerror don’t stop processing on an input error
sync pad every input block to the size of ibs, appending null bytes as needed

Block sizes are specified in bytes and may end in k, b, or w to indicate 1024 (kilo), 512 (block), or 2
(word), respectively.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Iinda Condron 95

Other Useful Commands

Examples

To copy files from one tape drive to another:

% dd if=/dev/rmt/0 of=/dev/rmt/1
204-0 records in
20+0 records out

To copy files written on a tape drive on a big endian machine, written with a block size of 20 blocks,
to a file on a little endian machine that now has the tape inserted in its drive, we would need to swap
pairs of bytes, as in:

% dd if=/dev/rmt/0 of=new_file ibs=20b conv=swab
107240 records in
2144040 records out

Upon completion dd reports the number of whole blocks and partial blocks for both the input and
output files.

8.2.5 od - octal dump of a file

od dumps a file to stdout in different formats, including octal, decimal, floating point, hex, and
character format.

Syntax
od [options] file

Common Options

-b octal dump

-dl-D decimal (-d) or long decimal (-D) dump

-sl-8 signed decimal (-s) and signed long decimal (-S) dump

-fI-F floating point (-f) or long (double) floating point (-F) dump

-xl-X hex (-x) or long hex (-X) dump

-c}l-C character (single byte) or long character dump (single or multi-byte

characters, as determined by locale settings) dump

-y verbose mode

96 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

File Archiving, Compression and Conversion

Examples

To look at the actual contents of the following file, a list of P. G. Wodehouse’s Lord Emsworth

novels.

Something Fresh [1915]
Leave it to Psmith [1923]
Summer Lightning [1929]
Heavy Weather [1933]

Blandings Castle and Elsewhere [1935]
Uncle Fred in the Springtime [1939]

Full Moon [1947]

we could do:

% od -¢ wodehouse

Uncle Dynamite [1948]

Pigs Have Wings [1952]
Cockeail Time [1958]

Service with a Smile {1961}
Galahad at Blandings [1965]
A Pelican at Blandings [1969]
Sunset at Blandings [1977]

0000000 S o me t hing Fresh

0000020 [1 9 1

571w Uncle Dyn

0000040 a m i te [1 948 JwLea

0000060 v e it

0000100 [1 9 2
0000120 W i n

0000140 m m e

0000160 1 9 2 9
0000200 i m e

to Psmit¢th
3 1MPigs Have
g s [1 9521w S
Lightning [
JM Cocktail T
[1 9581w Heavy

0000220 W e at her
0000240 S er vice w
0000260 m i 1 e [1 96
0000300 d i ngs C as
0000320 E 1l s e w her
0000340 T G alahad

[1 933 1u
ith a S
1 Tw B 1 an
tle and
e [1 9335
at B1la

0000360 n d ings [1 965 1w Un

0000400 ¢ 1 ¢ Fred
0000420 S pringtim

i n t he

e [1939

0000440 T A Pelican at B

0000460 1 a ndings

00G0500 F u 1 1 M oon

[1969 1w

[1 94 7]

0000520\t S unset at Bland
0000540 i ngs [1977 1w

0000554

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

97

Other Useful Commands

8.3 Remote Connections

TABLE 8.3 Remote Connection Commands
Command/Syntax’ What it will do
Jinger [options] user{ @ hostname] report information about users on local and remote machines
Jtp [options] host transfer file(s) using file transfer protocol
rcp [options] hostname remotely copy files from this machine to another machine
rlogin [options] hostnane login remotely to another machine
rsh [options] hostname remtote shell to run on another machine
telnet [host [port]] communicate with another host using telnet protocol

8.3.1 TELNET and FTP - remote login and file transfer protocols

TELNET and FTP are Application Level Internet protocols. The TELNET and FTP protocol
specifications have been implemented by many different sources, including The National Center for
Supercomputer Applications (NCSA), and many other public domain and shareware sources.

The programs implementing the TELNET protocol are usually called telnet, but not always. Some
notable exceptions are (n3270, WinQVT, and QWS83270, which are also TELNET protocol
implementations. TELNET is used for remote login to other computers on the Internet.

The programs implementing the FTP protocol are usually called f#p, but there are exceptions to that
too. A program called Fefch, distributed by Dartmouth College, WS_FTP, written and distributed by
John Junod, and Fiptool, written by a Mike Sullivan, are FTP protocol implementations with graphic
user interfaces. There’s an enhanced FTP version, ncftp, that allows additional features, written by
Mike Gleason. Also, FTP protocol implementations are often included in TELNET implementation
programs, such as the ones distributed by NCSA. FTP is used for transferring files between
computers on the Internet.

rlogin is a remote login service that was at one time exclusive to Berkeley 4.3 BSD UNIX.
Essentially, it offers the same functionality as felnet, except that it passes to the remote computer
information about the user's login environment. Machines can be configured to allow connections
from trusted hosts without prompting for the users’ passwords. A more secure version of this
protocol is the Secure SHell, SSH, software written by Tatu Ylonen and available via
ftp://ftp.net.ohio-state.edu/pub/security/ssh.

From a Unix prompt, these programs are invoked by typing the command (program name) and the
(Internet) name of the remote machine to which to connect. You can aiso specify various options, as
allowed, for these commands.

98 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Remote Connections

Syntax

telnet [options] [remote_host [port_number]]
tn3270 [options] [remote_host { port_number]|]
Jtp [options] [remote_host |

Common Options

ftp telnet Action

-d set debugging mode on
~-d same as above (SVR4 only)

-i turn off interactive prompting

-n - don’t attempt auto-login on connection

-v verbose mode on
-l user connect with username, user, on the remote host (SVR4 only)
-8 8-bit data path (SVR4 only)

telnet and 3270 allow you the option of specifying a port number to connect to on the remote host.
For both commands it defaults to port number 23, the telnet port. Other ports are used for debugging
of network services and for specialized resources.

Examples

telnet oscar.us.ohio-state.edu 1
tn3270 ohstmvsa.acs.ohio-state.edu

ftp magnus.acs.ohio-state.edu

The remote machine will query you for your login identification and your password. Machines set up
as archives for software or information distribution often allow anonymous ftp connections. You fip
to the remote machine and login as anonymous (the login ftp is equivalent on many machines), that
is, when asked for your "login" you would type anonymous.

Once you have successfully connected to a remote computer with felnet and rlogin (and assuming
terminal emulation is appropriate) you will be able to use the machine as you always do.

Once you have successfully connected to a remote computer with fip, you will be able to transfer a
file "up" to that computer with the puf command, or "down" from that computer with the get
command. The syntax is as follows:

put local-file-name remote-file-name

get local-file-name remote-file-name

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 99

Other Useful Commands

Other commands are available in fip as well, depending on the specific "local" and "remote" FTP
implementations. The kelp command will display a list of available commands. The help command
will also display the purpose of a specific command. Examples of valid commands are shown below:

help display list of available commands

help mget display the purpose of the mget command ("get multiple files")
pwd present working directory

Is or dir directory list

cd change directory

led ‘ local change directory

open specify the machine you wish to connect with

ser specify your login id (in cases where you are not prompted)
qetit quit out of the FTP program

8.3.2 finger - get information about users

Jinger displays the .plan file of a specific user, or reports who is logged into a specific machine. The
user must allow general read permission on the .plan file.

Syntax

Singer [options] [user] @hostname]]

Common Options

-1 force long output format
-m match username only, not first or last names
-5 force short output format

Examples

brigadier: condron [77]> finger workshop@nyssa
This is a sample .plan file for the nyssa id, workshop.
This id is being used this week by Frank Fiamingo, Linda
DeBula, and Linda Condron, while we teach a pilot version
of the new Unix workshop we developed for UTS.

Hope yer learnin' somethin'.
Frank, Linda, & Linda

brigadier: condron [77]> finger

Login Name TTY Idle When Where
condron Linda S Condron 0 Sun 18:13 lcondron-mac.acs
frank Frank G. Fiamingo pl Mon 16:19 nyssa

i00 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Remote Connections

8.3.3 Remote commands

A number of Unix machines can be connected together to form a local arca network. When this is the
case, it often happens that a user of one machine has valid login access to several of the other
machines in the local network. There are Unix commands available to such users which provide
convenience in carrying out certain common operations. Because these commands focus on
communications with remote hosts in the local network, the command names begin with the letter
"r": rlogin, rsh, and rcp. The remote access capability of these commands is supported (optionally)
by the dotfile, ~/.rhosts, for individual users and by the system -wide file /etc/hosts.equiv. For
security reasons these may be restricted on some hosts,

The rlogin command allows remote login access to another host in the local network. rlogin passes
information about the local environment, including the value of the TERM environment variable, to
the remote host.

The rsh command provides the ability to invoke a Unix shell on a remote host in the local network for
the purpose of executing a shell command there. This capability is similar to the "shell escape”
function commonly available from within such Unix software systems as editors and email.

The rep command provides the ability to copy files from the local host to a remote host in the local
network.

Syntax

rlogin [-1 username | remote_host
rsh [-1username] remote_host [command |

rep | [userl]@host]:Joriginal_filename [[user2]@host2:new_filename

where the parts in brackets ([]) are optional. rcp does not prompt for passwords, so you must have
permission to execute remote commands on the specified machines as the selected user on each
machine,

Common Options

-f username connect as the user, username, on the remote host (rlogin & rsh)

The .rhosts file, if it exists in the user's home directory on the remote host, permits rlogin, rsh, or rep
access to that remote host without prompting for a password for that account. The .rhosts file
contains an entry for each remote host and username from which the owner of the .rhosts file may
wish to connect. Each entry in the .rhosts file is of the form:

- remote_host remote_user

where listing the remote_user is optional. For instance, if Heather Jones wants to be able to connect
to machinel (where her username is heather) from machine2 (where her username is jones), or from
machine 3 (where her username is heather, the same as for machine1), she could create a .rhosts file
in her home directory on machinel. The contents of this file could be:

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 101

Other Useful Commands

machine2 jones
machine3
—....Or.._

machine? jones
machine3 heather

On a system-wide basis the file /etc/hosts.equiv serves the same purpose for all users, except the
super-user. Such a file with the contents:

remote_machine

allows any user from remote_machine to remote connect to this machine without a password, as the
same username on this machine.

An /etc/hosts.equiv file with the contents:

remote_machine remote_user

allows remote_user, on remote_machine, to remote connect to this machine as any local user, except
the super-user.

/etc/hosts.equiv and ~/.rhosts files should be used with caution.

The Secure SHell (SSH) versions of the rep, rsh, and rlogin programs are freely available and
provide much greater security.

102 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Shell Seripts

CHAPTER 9 Shell Programming

9.1 Shell Scripts

You can write shell programs by creating scripts containing a series of shell commands. The first line
of the script should start with #! which indicates to the kernel that the script is directly executable.
You immediately follow this with the name of the shell, or program (spaces are allowed), to execute,
using the full path name. Generally you can count on having up to 32 characters, possibly more on
some systems, and can include one option. So to set up a Bourne shell script the first line would be:

#! /bin/sh

or for the C shell:
#! /binfcsh -

where the "-f" option indicates that it should not read your .cshre. Any blanks following the magic
symbols, #!, are optional.

You also need to specify that the script is executable by setting the proper bits on the file with chmod,
e.g.
% chmod +x shell_script

Within the scripts # indicates a comment from that point until the end of the line, with #! being a
special case if found as the first characters of the file.

9.2 Setting Parameter Values

Parameter values, e.g. param, are assigned as:

Bourne shell C shell
param=value set param = value

where value is any valid string, and can be enclosed within quotations, either single (*value) or
double ("'value'), to allow spaces within the string value. When enclosed with backquotes (‘value)
the string is first evaluated by the shell and the result is substituted. This is often used to run a
command, substituting the command output for value, e.g.:

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 103

Shell Programming

$ day="date +%a°
$ echo $day
Wed

After the parameter values has been assigned the current value of the parameter is accessed using the
$param, or ${param}, notation.

9.3 Quoting

We quote strings to control the way the shell interprets any parameters or variables within the string.
We can use single (*) and double (") quotes around strings. Double quotes define the string, but
allow variable substitution. Single quotes define the string and prevent variable substitution. A
backslash (\) before a character is said to escape it, meaning that the system should take the character
literally, without assigning any special meaning to it. These quoting techniques can be used to
separate a variable from a fixed string. As an example lets use the variable, var, that has been
assigned the value bat, and the constant string, man. If T wanted to combine these to get the result
"batman" I might try:

$varman
but this doesn’t work, because the shell will be trying to evaluate a variable called varman, which

doesn’t exist. To get the desired result we need to separate it by quoting, or by isolating the variable
with curly braces ({}), as in:

"$var"man - quote the variable
$var""man - separate the parameters
$var"man" - quote the constant
$var"man - separate the parameters
$var'man' - quote the constant
$var\man - separate the parameters
${var}man - isolate the variable

L)

These all work because "', *,\, {, and } are not valid characters in a variable name.

We could not use either of

’$var’man

\$varman
because it would prevent the variable substitution from taking place.

When using the curly braces they should surround the variable only, and not include the $, otherwise,
they will be included as part of the resulting string, e.g.:

% echo {$var}man

{bat}man

104 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Variables

9.4 Variables

There are a number of variables automatically set by the shell when it starts. These allow you to
reference arguments on the command line.

These shell variables are:

TABLE 9.1 Shell Variables
Variabile Usage sh csh
$# number of arguments on the command line X
$- options supplied to the shell X
$? exit value of the last command executed X
$$ process number of the current process X X
$! process number of the last command done in background X
$n argument on the command line, where n is from 1 through 9, reading left to right X X
$0 the name of the current shell or program X X
$* all arguments on the command line ("$1 $2 ... $9™) X X
$@ all arguments on the command line, each separately quoted ("$1" "$2" ... "$9") X
$argv[n] selects the nth word from the input list) X
${argv[n]} same as above X
$#argy report the number of words in the input list X

We can illustrate these with some simple scripts. First for the Bourne shell the script will be:

#1/bin/sh
echo "$#:" $#
echo '$#: $#
echo '$-:' §-
echo '$7.' $7?
echo '$3:' $$
echo '$1;' &t
echo '$3:' $3
echo '$0:' $0
echo '$*:' §*
echo '$@:' $@

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 105

Shell Programming

When executed with some arguments it displays the values for the shell variables, e.g.:

$./variables.sh one two three four five
5:5
$4: 5
$-
$2.0
$$: 12417
St
$3: three
$0: /variables.sh
$*: one two three four five
$@: one two three four five

As you can see, we needed to use single quetes to prevent the shell from assigning special meaning to
$. The double quotes, as in the first echo statement, allowed substitution to take place.

Similarly, for the C shell variables we illustrate variable substitution with the script:
#l/binfcsh -f
echo '$5:" $$
echo '$3:" $3
echo '$0:" $0
echo '$*." §*
echo '$argv]2]:" Sargv]2]
echo '${argv[4]}: ${argv[4]}
echo '$#argv:' $tfargv

which when executed with some arguments displays the following:

% .fvariables.csh one two three four five
$$: 12419 =
$3: three »
$0: /variables.csh
$*: one two three four five
Sargv[2]: two
${argvf4}}: four
$#argv: 5

106 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Parameter Substitution

9.5 Parameter Substitution

You can reference parameters abstractly and substitute values for them based on conditional settings
using the operators defined below. Again we will use the curly braces ({}) to isolate the variable and
its operators.

$parameter substitute the value of parameter for this string

${parameter} same as above, The brackets are helpful if there’s no separation
between this parameter and a neighboring string.

$parameter= sets parameter to null.

${parameter-default} if parameter is not set, then use default as the value here. The
parameter is not reset.

${parameter=default} if parameter is not set, then set it to default and use the new value

${parameter+newval) if parameter is set, then use newval, otherwise use nothing here.

The parameter is not reset.

${parani'eter?message} if parameter is not set, then display message. If parameter is set,
then use its current value,

There are no spaces in the above operators. If a colon (3) is inserted before the -, =, +, or ? then a test
if first performed to see if the parameter has a non-null setting.

The C shell has a few additional ways of substituting parameters:

$list[n] selects the nth word from list
${list[n]} same as above

$itlist report the number of words in list
$?parameter return 1 if parameter is set, 0 otherwise
${?parameter} same as above

$< read a line from stdin

The C shell also defines the array, $argvin] to contain the n arguments on the command line and
$#argy to be the number of arguments, as noted in Table 9.1,

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 107

Shell Programming

To illustrate some of these features we’ll use the test script below.

#!/bin/sh
param(=$0
test -n "$1" && paraml=$1
test -n "$2" && param2=%$2
test -n "$3" && param3=$3
echo 0: $param0
echo "1: ${param1-1}:\c" ;echo $paraml
echo "2: ${param2=2}: \c¢" ;echo $param2
echo "3: ${param3+3}: \c" ;echo $pafam3

In the scri_pt we first test to see if the variable exists, if so we set a parameter to its value. Below this
we report the values, allowing substitution.

In the first run through the script we won’t provide any arguments:

$ Jparameter.sh

0: ./parameter.sh # always finds $0

I 1: # substitute 1, but don’t assign this value
2:2:2 # substitute 2 and assign this value

3 # don’t substitute

In the second run through the script we’ll provide the arguments:

$./parameter one two three

0: ./parameter.sh # always finds $0

1: one: one # don’t substitute, it already has a value
2: two: two # don’t substitute, it already has a value
3: 3: three # substitute 3, but don’t assign this value

108 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Here Document

9.6 Here Document

A here document is a form of quoting that allows shell variables to be substituted. It’s a special form
of redirection that starts with <<WORD and ends with WORD as the only contents of a line. In the
Bourne shell you can prevent shell substitution by escaping WORD by putting a \ in front of it on the
redirection line, i.e. <AWORD, but not on the ending line. To have lhe same effect the C shell
expects the \ in front of WORD at both locations.

The following scripts illustrate this,

for the Bourne shell: and for the C shell:

#!/binfsh #!/binfcsh -f
does=does set does = does
not="" setnot=""

cat << EOF cat << EOF

This here document This here document
$does $not $does $not

do variable substitution
EOF

cat << \EQF

This here document
$does $not

do variable substitution
EQF

Both produce the output:

This here document
does

do variable substitution
This here document
$does $not

do variable substitution

do variable substitution
EOF

cat << \EOF

This here document
$does $not

do variable substitution
\EQF

In the top part of the example the shell variables $does and $not are substituted. In the bottom part
they are treated as simple text strings without substitution.

Introduction to Uhix © 1996 Frank Fiamingo, Linda DeBuia, Linda Condron 109

Shell Programming

9.7 Interactive Input

Shell scripts will accept interactive input to set parameters within the script.

9.7.1 Sh
Sh uses the built-in command, read, to read in a line, e.g.:

read param

We can illustrate this with the simple script:

#!/bin/sh

echo "Input a phrase \c¢" # This is /binfecho which requires "\c¢" to prevent <newline>

read param

echo param=$param

When we run this script it prompts for input and then echoes the results:

$ /read.sh
Input a phrase heflo frank # 1 type in hello frank <return>

param=hello frank

9.7.2 Csh
Csh uses the $< symbol to read a line from stdin, e.g.:

set param = $<

The spaces around the equal sign are important. The following script illustrates how to use this.

#!/bin/csh -

echo -n "Input a phrase " # This built-in echo requires ~n to prevent <newline>

set param = $<

echo param=3$param

Again, it prompts for input and echoes the results:

% .fread.csh
Input a phrase hello frank # 1 type in hello frank <return>

param=hello frank

110 @ 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Functions

9.8 Functions

The Bourne shell has functions. These are somewhat similar to aliases in the C shell, but allow you
more flexibility. A function has the form:

fen (O { command: }

where the space after {, and the semicolon (;) are both required; the latter can be dispensed with if a
<newline> precedes the }. Additional spaces and <newline>'s are allowed. We saw a few examples
of this in the sample .profile in an earlier chapter, where we had functions for Is and 1I:

Is() { /bin/ls -sbF "$@";}

1) { Is-al "$@";}

The first one redefines Is so that the options -sbF are always supplied to the standard /bin/ls
command, and acts on the supplied input, "$@". The second one takes the current value for Is (the
previous function) and tacks on the -al options.

Functions are very useful in shell scripts. The following is a simplified version of one I use to
automatically backup up system partitions to tape.

#1/bin/sh

Cron script to do a complete backup of the system

HOST="/bin/uname -n°

admin=frank

Mit=/bin/mt

Dump=/usr/sbin/ufsdump

Mail=/bin/maiix

device=/dev/rmt/On

Rewind="$Mt -f $device rewind"

Offline="$Mt -f $device rewoffl"

Failure - exit

failure () { 7

$Mail -s "Backup Failure - $HOST" $admin << EQF_failure
SHOST
Cron backup script failed. Apparently there was no tape in the device.

EOF _failure

exit 1

}

Dump failure - exit
dumpfail () {

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 111

Shell Programming

$Mail -s "Backup Failure - $HOST" $admin << EOF_dumpfail
$HOST
Cron backup script failed. Initial tape access was okay, but dump failed.
EOF_dumpfail
exit 1
}
Success
success () {
$Mail -s "Backup completed successfully - SHOST" $admin << EOF_success
$HOST
Cron backup script was apparently saccessful. The /etc/dumpdates file is:
“fbin/cat fete/dumpdates”
EOF_success
}
Confirm that the tape is in the device
$Rewind fl failure
$Dump Ouf $device / I dumpfail
$Dump Ouf $device /usr Il dumpfail
$Dump Cuf $device fhome If dumpfail
$Dump Ouf $device /var § dampfail
($Dump Ouf $device /var/spool/mail il dumpfail) && success
$Offline

This script illustrates a number of topics that we’ve looked at in this document. It starts by setting
various parameter values. HOST is set from the output of a command, admin is the administrator of
the system, Mt, Dump, and Mail are program names, device is the special device file used to access
the tape drive, Rewind and Offline contain the commands to rewind and off-load the tape drive,
respectively, using the previously referenced Mt and the necessary options. There are three functions
defined: failure, dumpfail, and success. The functions in this script all use a here document to form
the contents of the function. We also introduce the logical OR (Il) and AND (&&) operators here;
each is position between a pair of comumands. For the OR operator, the second command will be run
only if the first command does not complete successfully. For the AND operator, the second
command will be run only if the first command does complete successfully.

The main purpose of the script is done with the Dump commands, i.e. backup the specified file
systems. First an attempt is made to rewind the tape. Should this fail, Il failure, the failure function
is run and we exit the program. If it succeeds we proceed with the backup of each partition in turn,
each time checking for successful completion (Il dumpfail). Should it not complete successfully we
run the dumpfail subroutine and then exit. If the last backup succeeds we proceed with the success
function ((...) && success). Lastly, we rewind the tape and take it offline so that no other user can
accidently write over our backup tape.

112 ® 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Control Commands

9.9 Control Commands

9.9.1 Conditional if

The conditional if statement is available in both shells, but has a different syntax in each.

9.9.11 Sh
if conditionl
then
command list if condition] is true
[elif condition2
then command list if condition2 is true]
[else
command list if condition] is false]
fi _
The conditions to be tested for are usually done with the fest, or /] command (see Section 8.9.6). The
if and then must be separated, either with a <newline> or a semicolon (3).
#!/bin/sh
if [$#-ge2]
then
echo $2
elif [$# -eq 1]; then
echo $1
else
echo No input
fi

There are required spaces in the format of the conditional test, one after [and one before]. This script

should respond differently depending upon whether there are zero, one or more arguments on the
command line. First with no arguments:

$ Jfif.sh
No input
Now with one argument:

$ /if.sh one
one

And now with two arguments:

$./if sh one two

two

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 113

Shell Programming

9.9.1.2 Csh

if (condition) command

-or-
if (conditionl) then

command list if c.onditionl is true
lelse if (condition2) then

command list if condition? is true}
[else

command list if condition] is false]

endif

The if and then must be on the same [ine.

#!/bin/csh -f
if ($#argy >=2) then

echo $2
else if ($#argv == 1) then
echo $1
else
echo No input
endif

Again, this script should respond differently depending upon whether I have zero, one or more
arguments on the command line. First with no arguments:

% fif.csh
No input
Now with one argument:

% .fif.csh one

one -+

And now with two arguments:

% .fif csh one two

wo

114 © 1996 Frank Fiamingo, Linda DeBuia, Linda Condron Introduction to Unix

Control Commands

9.9.2 Conditional switch and case

To choose between a set of string values for a parameter use case in the Bourne shell and switch in
the C shell.

9.9.2.1 Sh
case parameter in
patternl[ipatternla]) command listl;;
pattern2) command list2
command list2a;;
pattern3) command list3;;
*} 5

esac

You can use any valid filename meta-characters within the patterns to be matched. The ;; ends each
choice and can be on the same line, or following a <newline>, as the last command for the choice.
Additional alternative patterns to be selected for a particular case are separated by the vertical bar, |,
as in the first pattern line in the example above. The wildcard symbols,: ? to indicate any one
character and * to match any number of characters, can be used either alone or adjacent to fixed
strings.

This simple example illustrates how to use the conditional case statement.
#/bin/sh

case $1 in
aalab) echo A

b?) echo "B \¢"

echo $1;;
¢y echo C;;
*y echo D;;

esac

So when running the script with the arguments on the left, it will respond as on the right:

aa A
ab A
ac D
bb B bb
bbb D
c C
ce C
fff D

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 115

Shell Programming

9.9.2.2 Csh
switch (parameter)
case patternl:
command list]
[breaksw]
case pattern?:
command list2
[breaksw]
default:
command list for default behavior
[breaksw]
endsw

breaksw is optional and can be used to break out of the switch after a match to the string value of the
parameter is made. Switch doesn’t accept "I" in the pattern list, but it will allow you to string several
case statements together to provide a similar result. The following C shell seript has (he same
behavior as the Bourne shell case example above.

#1/binfcsh -f
switch ($1)

case aa:
case ab:
echo A
breaksw
case b7
echo-n"B"
echo $1
breaksw
case c*;
echo C
breaksw
default:
echo D

endsw

116 @ 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Control Commands

9.9.3 for and foreach

One way to loop through a list of string values is with the for and foreach commands.

9.9.3.t Sh
Jor variable [in list_of values]
do
command list
done

The list_of_values is optional, with $@ assumed if nothing is specified. Each value in this list is
sequentially substituted for variable until the list is emptied. Wildcards can be used and are applied
to file names in the current directory. Below we illustrate the for loop in copying all files ending in

.old to similar names ending in .new. In these examples the basename utility extracts the base part of
the name so that we can exchange the endings.

#1/bin/sh
for file in *.0ld
do
newf="basename $file .old®

cp $file $newf.new
done

9.9.3.2 Csh
Joreach variable (list_of_values)
command list

end

The equivalent C shell script to copy all files ending in .old to .new is:
#!/bin/csh -f
foreach file (*.0ld)
set newf = "basename $file .old

cp $file $newf.new
end

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 117

Shell Programming

9.9.4 while -

The while commands let you loop as long as the condition is true.

9.94.1 Sh
while condition
do
command list
{break]
{continue]
done

A simple script to illustrate a while loop is:

#!/bin/sh
while [$#-gt 0]
do
echo $1
shift

done

This script takes the list of arguments, echoes the first one, then shifts the list to the left, losing the _
original first entry. It loops through until it has shifted all the arguments off the argument list. -
$./while.sh one two three
one
two

three

118 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Control Commands

9.94.2 Csh
while (condition)
command list
{break]
[continue]
end

If you want the condition to always be true specify 1 within the conditional test.

A C shell script equivalent to the one above is:

#!/binfcsh -f

while ($#argy 1= 0)
echo $argv[1]
shift

end

9.9.5 until
This looping feature is only allowed in the Bourne shell.

unftil condition
do

command list while condition is false
done

The condition is tested at the start of each loop and the loop is terminated when the condition is true.
A script equivalent to the while examples above is:
#!/bin/sh
until { $#-1e 0]
do
echo $1
shift
done

Notice, though, that here we’re testing for less than or equal, rather than greater than or equal,
because the until loop is looking for a false condition.

Both the until and while loops are only executed if the condition is satisfied. The condition is
evaluated before the commands are executed.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 119

Shell Programming

9.9.6 test

Conditional statements are evaluated for true or false values. This is done with the fest, or its
equivalent, the /] operators. It the condition evaluates to true, a zero (TRUE) exit status is set,
otherwise a non-zero (FALSE) exit status is set. If there are no arguments a non-zero exit status is
set. The operators used by the Bourne shell conditional statements are given below.

For filenames the options to fest are given with the syntax:

-option filename

The options available for the fest operator for files include:

-h or -L

-C

-b

-t

"8

<k

-8

true if it exists and is readable

true if it exists and is writable

true if it exists and is executable

true if it exists and is a regular file (or for csh, exists and is not a directory)
true if it exists and is a directory

true if it exists and is a symbolic link

true if it exists and is a character special file (i.e. the special device is accessed
one character at a time)

true if it exists and is a block special file (i.e. the device is accessed in blocks
of data)

true if it exists and is a named pipe (fifo)

true if it exists and is setuid (i.e. has the set-user-id bit set, s or S in the third
bit)

true if it exists and is setgid (i.e. has the set-group-id bit set, s or S in the sixth
bit)

true if it exists and the sticky bit is set (a t in bit 9)

true if it exists and is greater than zero in size

There is a test for file descriptors:

-t [file_descriptor]

There are tests for strings:

-z string

-n string

stringl = string2
stringl != string2

string

true if the open file descriptor (default is 1, stdin) is associated with a terminal

true if the string length is zero

true if the string length is non-zero

true if string] is identical to string2
true if string1 is non identical to string?2
true if string is not NULL

120 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Control Commands

There are integer comparisons:

nl -eq n2 troe if integers nl and n2 are equal
""""" nl -ne n2 true if integers nl and n2 are not equal
nl -gt n2 true if integer nl is greater than integer n2
ni -ge n2 true if integer nl is greater than or equal to integer n2
nl -1t n2 true if integer n1 is less than integer n2
nl -le n2 true if integer n1 is less than or equal to integer n2

The following logical operators are also available:

! negation (unary)

-a and (binary)
-0 or (binary)
0O expressions within the () are grouped together. You may need to quote the ()

to prevent the shell from interpreting them.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 121

Shell Programming

9.9.7 C Shell Logical and Relational Operators

The C shell has its own set of built-in logical and relational expression operators. In descending order
of precedence they are:

(.) group expressions with ()

~ inversion (one’s complement)

! logical negation

%1, % multiply, divide, modulus
+, - add, subtract

<<, >> bitwise shift left, bitwise shift right

<= less than or equal

>= greater than or equal

< less than

> greater than

== equal

= not equal

=~ match a string

I~ don’t match the string

& bitwise AND

A bitwise XOR (exclusive or)

I ' bitwise OR

&& logical AND

I logical OR

{command} true (1) if command terminates with a zero exit status, false (0) otherwise.

The C shell also allows file type and permission inquiries with the operators:

T return true (1) if it exists and is readable, otherwise return false (0)

-W true if it exists and is writable

-X true if it exists and is executable

-f true if it exists and is a regular file {or for csh, exists and is not a directory)
-d troe if it exists and is a directory

- true if the file exists

-0 true if the user owns the file

“Z true if the file has zero length (empty)

122 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

CHAPTER 10 Editors

There are numerous fext processing utilities available with Unix, as is noted throughout this
document (e.g., ed, ex, sed, awk, the grep family, and the roff family). Among the editors, the
standard "visual" (or fullscreen) editor on Unix is vi. It comprises a super-set, so to speak, of ed and
ex (the Unix line editors) capabilities.

Vi is a modal editor. This means that it has specific modes that allow text insertion, text deletion, and
command entering. You leave the insert mode by typing the <escape> key. This brings you back to
command mode. The line editor, ex, is incorporated within vi. You can switch back and forth
between full-screen and line mode as desired. In vi mode type Q to go to ex mode. In ex mode at the
: prompt type vi to return to vi mode. There is also a read-only mode of vi, which you can invoke as
view.

Another editor that is common on Unix systems, especially in college and university environments, is
emacs (which stands for "editing macros"). While vi usually comes with the Unix operating system,
emacs usually does not. It is distributed by The Free Software Foundation. It is arguably the most
powerful editor available for Unix. It is also a very large software system, and is a heavy user of
computer system resources.

The Free Software Foundation and the GNU Project (of which emacs is a part) were founded by
Richard Stallman and his associates, who believe (as stated in the GNU Manifesto) that sharing
software is the "fundamental act of friendship among programmers." Their General Public License
guarantees your rights to use, modify, and distribute emacs (including its source code), and was
specifically designed to prevent anyone from hoarding or turning a financial profit from emacs or any
software obtained through the Free Software Foundation. Most of their software, including emacs, is
available at: ftp://prep.ai.mit.edu/pub/gnu.

Both vi and emacs allow you to create start-up files that you can populate with macros to control
settings and functions in the editors.

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 123

Editors

10.1 Configuring Your vi Session

To configure the vi environment certain options can be set with the line editor command :set during a
vi editing session. Alternatively, frequently used options can be set automatically when vi is invoked,
by use of the .exre file. This file can also contain macros to map keystrokes into functions using the
map function. Within vi these macros can be defined with the :map command. Control characters
can be inserted by first typing <control>-V (*V), then the desired control character. The options
available in vi include, but are not limited to, the following. Some options are not available on every
Unix system.

:set all display all option settings

:set ignorecase ignore the case of a character in a search
:set list display tabs and carriage returns

:set nolist turn off list option

:set number display line numbers

:set nonumber turn off line numbers

:set showmode display indication that insert mode is on
:set noshowmode turn off showmode option

:set wrapmargin=n turn on word-wrap n spaces from the right margin
:set wrapmargin=0 turn off wrapmargin option

:set wamn display "No write since last change”

:set nowarn turn off "write" warning

The following is a sample .exrec file:

set wrapmargin=10
set number
set list

set warn

set ignorecase
map K {!}fint -80
map *Z :1spell

reformat this paragraph, {1}, using fint to 80 characters per line
invoke spell, 2!, to check a word spelling (return to vi with ~D)

124

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Configuring Your emacs Session

10.2 Configuring Your emacs Session

Configuring the emacs environment amounts to making calls to LISP functions. Emacs is infinitely
customizable by means of emacs variables and built-in functions and by using Emacs LISP
programming. Settings can be specified from the minibuffer (or command line) during an emacs
session. Alternatively, frequently used settings can be established automatically when emacs is
invoked, by use of a .emacs file. Though a discussion of Emacs LISP is beyond the scope of this
document, a few examples of common emacs configurations follow.

To set or toggle emacs variables, or to use emacs built-in functions, use the <escape> key ("Meta" is
how emacs refers to it), followed by the letter x, then by the variable or function and its arguments.

M-x what-line what line is the cursor on?
M-x auto-fill-mode turn on word-wrap
M-x auto-fill-mode turn off word-wrap
M-x set-variable<return>
fill-column<return> set line-length to
45 45 characters
M-x set-variable<return>
auto-save-interval<return> save the file automatically after every
300 300 keystrokes
M-x goto-line<return>16 move the cursor to line 16
M-x help-for-help invoke emacs help when C-h has been bound to the
backspace key

The following is a sample .emacs file:

(message "Loading ~/.emacs...")
; Comments begin with semi-colons and continue to the end of the line.

(setq text-mode-hook 'turn-on-auto-fill) ;turn on word-wrap
{(setq fill-column 45) JHne-length=45 chars
(setq auto-save-interval 300) ;save after every 300 keystrokes

; Bind (or map) the rubout (control-h) function to the backspace key
(global-set-key "\C-h" "backward-delete-char-untabify)

; Bind the emacs help function to the keystroke sequence "C-x ?".
(global-set-key "\C-x?" 'help-for-help)

; To jump to line 16, type M-#<return>16

(global-set-key "\M-#" 'goto-line)

; To find out what line you are on, type M-n

(global-set-key "\M-n" 'what-line)

(message "~/.emacs loaded.")

{message "")

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 125

vi Quick Reference Guide

A»mxummow@mﬁ mcogmoum mE:ucw
JURIIND I UO 1X3) SUFEIREL sofueyd

(¥} Jans[o1 03 1x9) sauryod
au 9y JO pUa 91} 0} 1%91 sedueyd

spiom {u)
JX3U 213 JO S1vorIeyD Safueyd

(passaxd st odeose [1un J0) piom o))
JO pu2 [nun plom JO §i810EIRLD Sofueyd

{passaid st adeass [run 10) SUI N[Jo pUD
fhun ($our] uo $I9)0BIRYD {U) SIFURYD

(xho
&

ma{u)
M

20(u)

1SpERTINIo]) 33uey)

JEX9 pug a[IJ JUSNI 0] $OFUBYD SUIM A7 A
uonisod 108100 18

PUBUIUIOD [[9YS JO I[NSAI SPIASUl (pUBLIWOD);1:

adessa [Joys (puewIuioD);:
(o1 ® 312sur) vonisod
10510 JuafIno ay; 18 11pd Jusd

-102 OJUI IYTJ JO SHIAMCD Speal (epp 1
{(urew)

0} 9[1f JU3LIND JO SWEU SAUBYD (oureu) 3:

3ST] JUSWINSIR UT OfIf 1XU S}IPD u:
saBueyd

SPIeaSIp pue HOISSS P SHA ib:
apeul

$25URYD OU/M HOISSAS 112 SNb b:
(o113 a1

-H12 ST JNBep) 21 SOlIAISA0 {aq1p) jm:
UOSSas 1Ipa sunb pur

911} JuaLmd 0] sa5uBYD §OIIA ba:
(o117 RIm

ST} neJop) o1 0] sefusfo sa1m (o) m:

snouepadiue)y af

J08IND 2I0Jeq 1¥a) palalep 10 payuek sind d

10S.1M2 123y 1%9) paIo[ep 10 payuek sind d

19730q 01 SpIom (u) squeA FINCIHTY

IRung o saull (u) syuek £4{u)

‘puBLEWOoY ($:) vonmnsqns ise] sjgadal ¥

S/MouPIO/s <PRIINYIe SOU QUT[>:

PIO I0F (S)pI0M MTU S ISEns s:

QU] JUSLIMD IOJ 1%} SOHNNISQNS S

12]0BIRYD JUALIND I0] 1¥3} S2jmNsqns s

25ueyo 5] s1eadan .

suf
STY) Lo SUop I1Sn[puBWILIOS 1SB] 94 Opui n
AUI XU 31} pUE 2UI] JUaLnD 9K surof 3

I90BIBYD JURLIND BY) JO 9580 o) safuetd

Jejorreld snotaaxd sajo[ep

{s)ymorIByD (U) $232[2D

JRIORTEYD JUOLING $2}01op

9UT] IO pUS 0} IOSIND WOIJ SJoap
(8)prom () $932]2p
(s)aur] (u) sa1919p

QUY] JULIIND §919[9p
13%2 7, SunPpQ

1xe1 od £y o eur] jual
-1 () 210)eq aul] mau uado ((eydie)

QBDQEQQE
JuaLno oul Io)ye aui mou uado (o E&&

(pueuiUIOoD
a3ueyo o1 passard st adeose [mun 1o) suy|
S} JO pUS Ul [NUN SIS10BIBYD SJLIMISAD

podA1 To1ouIeyD 10U 93 YiIA
JOSANLD S fopun Imoereyd syl asvidar

QUT} 21} JO pue 213 0} 1x9] puadde
SUI] S JO SUTMUISq 9] I8 X3} JIesul

(1%27 1910 SILIMIIAO
10U $20p) J0SIND 31 IAE 19 puadde

I0SINY 9} 210304 1Xa] 1I0SUI

x(u)

a
#p(u)
PP(W)

pp

«

.-

pIOM JO PUd a
(s)prom (u) yoeg q(uw)

(s)piom (u) piemio; m(u)

aujopus - §

aur] Jo FuimuiSaq (019z) 0

(u) oup] Jo Buruursaq 01 aa0wr 0)(u)

a1y Jo auyy 1se] Jo BurnyiSaq 3
32 JO 2uf] 188] Jo SuumBaq 1
U2QIDS JO oUl] 2@2& Jo Sutauidaq N
us1ss Jo suy doj Jo Suruuisaq H

{I91BU 10U $20P 258D ‘A3 [0HU0D SRIEIPUT)

w3108 Jrey dn Nv

V92108 Jjer] UMOp av
US9I0S JUO Jorq Iy
UDRIDS SUO PIBMIO] Av

{os[e Miom A[jensn s£ay mOLe SU])
{s)aouds (u) JySu Hu)

(Syooeds (W) dn W(w)

{s)ooreds (u) umop [(u)

y(u)
[euondo st pue ‘Ioqunu & s21edIpur (u)

(s)aords (u) 1391

ISPUBLUMIO,) JUIHIBAOTA] JOSIN))

1J%3 |, Sumn.Iasuy

*QATHSUDS 28ED ST 24 *PABOIPH e1aym 1daoxy
"pasn og ©1 spaeu Aoy adeosa oy ‘parsiue oq
0} ST PUBHITHOD JUSIIJIP B ouil} yoey -Aay adeose
oy Surssard £q pepsoeld oIe 24 Ul SPUBIWIOD Y

apINy 93UBIBISH HOIND 1A €01

126

, Linda DeBula, Linda Condron

jamingo

© 1996 Frank F

Introduction to Unix

emacs Quick Reference Guide

aaes o perdwoad aq pue ‘soRws 11X 223 X-)
271} JUDIDJIP B 0] JAJFnq 30w MAD X-D)

O[L] 9ARS gy W-U

uorysod 102 T8 2F] LIOSUL 1X-)

37 SIBUISYE pEAI pUR puy A=) X70)

11 peal pUE 91y puiy Fo %0

paysew uorsal Adoo MeTAT

9T SUI 0} JOTIND SACUL 9] <UIN33.I> AH]-0108 X-TAI
SI310BIBYD C O] S2UI] JO WISuay 195
SF <OINIOE> WHINJ0I-[[I <HINIAX> A[GRIIEA-JS X-TA]

derm piom uo uny JPOUE-[[H-03INE X-TA]

uorsa: ut yderSered gore jeunioyer ER7Y
ydeiSered jennojal b-1q

UOIIED0] JUBLINT 01Ul %3] pajalap Juek--aised £
jutod 03 ¥IeW WO SUrAIaag o odim--1na M=y
uorda1 jo Fumdoq yrew -0

spiom asodsuen A

sre1oeIeyd asodsuen)

PIOM B5BIIBMO] N

piom aseosaddn n-JAl

prom azipeydes >IN

aoedax L1anb -

9SIBAQI UI YoIeas I~

PIEmIO) YoIeas 5

2IUDIUIS 1Y I

auy [1ky 1D

plom € 9)9[ap P

J910eIeyD € 930[ap D

Souy} (U} PUBUIUIOD 1XaU 2y 1eadal

(W-JAL

I3[Nq Jo pus <=\

Iaynq jo FurumSaq >IN
ydesgered jo pus N
yderfered yo SuruurSaq N
POUQLS JO PUD a-JAl
92u9IU9s Jo Surnuifoq e-]A
PIOM QUO Yorq g

PIDM QUO PIEMIO] N
premioeq [[0I0S ATA
pIRMIO] JJOI0S A7)

U22108 HO SUl] JUSLIND I21U3D D
aul] Jo pua D)

QU Jo BuTHUIFoq ey

QuI] 1XaU u-)

aurf snotaaid d-o

19108 FRYD QU0 yoeq q-0
19]10BIRYD SUO ﬁ.um%.—& D

JHAUIAOHUI A0841])

suondun juejodwy HY0

SOPHIZ 950[0 73 XD
S11] S 2AES §-3 X-)
purtIod 10 uotielado Juexma Jo 0o 198 23 %)
opun 1 X))
diey L o)
Spuemo) [EIURSSH
(-]l Aq pajeotpur)

Aoy adeoss oy Summy H,ﬂm Aq 10 («3 Aq pojeolpur) Aey [onuod AU}
UmOp FUIp[oy A[snoauelnuns £q Iayls poiurduioddy are SPULUINIOD SIpuL

apIny 2Jualejey YIIND SJeWd 0L

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron

127

Unix Command Summary

CHAPTER 11

11.1 Unix Commands

Unix Command Summary

In the table below we summarize the more frequently used commands on a Unix system. In this
table, as in general, for most Unix commands, file, could be an actual file name, or a list of file names,

or input/output could be redirected to or from the command.

TABLE 11.1 Unix Commands

Command/Syntax

What it will do

awk/nawk [options] file

scan for patterns in a file and process the results

cat [options] file

concatenate (list) a file

cd [directory]

change directory

chgrp [options] group file

change the group of the file

chmod [options] file

change file or directory access permissions

chown [options] owner file

change the ownership of a file; can only be done by the superuser

chsh (passwd ~e/-s) username login_shell

change the user’s login shell (often only by the superuser)

cmyp [options) file! file2

compare two files and list where differences occur (text or binary files)

compress [options] file

compress file and save it as file.Z

cp |options] filel file2

copy filel into fileZ; fileZ shouldn't already exist. This command creates
or overwrites file2.

cuf (options) [file(s)]

cut specified field(s)/character(s) from lines in file(s)

date [options]

report the current date and time

dd [if=infile] [ol=outfile] [oper-
and=value]

copy a file, converting between ASCIIL and EBCDIC or swapping byte
order, as specified

diff [options] filel file2

compare the two files and display the differences (text files only)

df [options] [resource]

report the summary of disk blocks and inodes free and in use

du [options] [directory or file]

report amount of disk space in use

echo [text string]

echo the text string to stdout

ed or ex [options] file

Unix line editors

emacs [options] file

full-screen editor

| expr arguments -

evatuate the arguments, Used to do arithmetic, ete. in the shell.

file [options] file

classify the file type

128 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron

Introduction to Unix

Unix Commands

TABLE 1141

Unix Commands

Command/Syntax

What it will do

Jind directory [options] [actions]

find files matching a type or pattern

Jinger [options] user/ @ hostname]

report information about users on local and remote machines

Jfip loptions] host

transfer file{s) using file transfer protocol

grep [options)] 'search string’ argument
egrep [options) 'search string' argument

erep [options] 'search string' argument
P 1op g arg

search the argument (in this case probably a file) for all occurrences of
the search string, and list them.

gzip foptions] file
gunzip [options] file
zeat [options] file

compress or uncompress a file. Compressed files are stored with a .gz
ending

head [-uumber] file

display the first 10 (or number of) lines of a file

hostname

dispiay or set (super-user only) the name of the current machine

Eill [options] [-SIGNAL] [pid#] [%job]

send a signal to the process with the process id number (pid#) or job con-
trol number (%n). The default signal is to kill the process.

In [options] soarce_file target

link the source_file to the target

Ipg [options]
Ipstat foptions]

show the status of print jobs

Ipr [options] file
Ip [options] file

print to defined printer

{prm [options]

cancel [options]

remove a print job from the print queue

Is [options] [directory or file}

list directory contents or file permissions

mail [options] [user]
mailx [options] [user]

Mail [options] [user]

simple email utility available on Unix systems. Type a period as the first
character on a new line to send message out, question mark for help.

man [options] command

show the manual {man) page for a command

mkdir [options) directory

make a directory

more [options] file

less [options] file

page through a text file

pg [options] file
my [options] file! file2 move filel into file2
od [options] file octal dump a binary file, in octal, ASCIL, hex, decimal, or character

mode,

passwd [options]

set or change your password

paste [options] file

paste field(s) onto the lines in file

pr [options] file

filter the file and print it on the terminal

ps [options]

show status of active processes

Introduction to Unix

© 1996 Frank Fiamingo, Linda DeBula, Linda Condron | 129

Unix Command Summary

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

pwd

print working (current) directory

rcp [options] hostname

remotely copy files from this machine to another machine

rlogin [options] hostrame

login remotely to another machine

rm [options] file

remove (delete) a file or directory (-r recursively deletes the directory
and its contents) (- prompts before removing files)

rindir {options] directory

remove a directory

rsh foptions] hostrame

remote shell to run on another machine

script file saves everything that appears on the screen to file until exif is executed
sed [gptions] file stream editor for editing files from a script or from the command line
sort [options] file sort the lines of the file according to the options chosen

source file read commands from the file and execute them in the current shell.

. file source: C shell, .: Bourne shell.

strings [options] file

report any sequence of 4 or more printable characters ending in <NL> or
<NULL>. Usually used to search binary files for ASCII strings.

sity [options]

set or display terminal control options

tail [options] file

display the last few lines (or parts) of a file

tar key[options] [file(s))

tape archiver--refer to man pages for details on creating, listing, and
retrieving from archive files. Tar files can be stored on tape or disk.

tee foptions] file

copy stdout to one or more files

telnet [host [port]]

communicate with another host using telnet protocol

touch [options] [date] file

create an empty file, or update the access time of an existing file

tr {options] stringl string2

translate the characters in string1 from stdin into those in string2 in stdout

uncompress file.Z

uncompress file.Z and save it as a file

uniq [options) file

remove repeated lines in a file

uudecode [file)

decode a uuencoded file, recreating the original file

uunencode [file] new_name

encode binary file to 7-bit ASCII, useful when sending via email, to be
decoded as new_name at destination

vi [options] file

visual, full-screen editor

we [options] {file(s)]

display word (or characler or line) count for file(s)

whereis [options] command

report the binary, scurce, and man page locations for the command
named

which command

reports the path to the command or the shell alias in use

who orw

report who is logged in and what processes are running

zeat file.Z

concatenate (list) uncompressed file to screen, leaving file compressed on

disk

130 ® 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

Highly Recommended

CHAPTER 12 A Short Unix Bibliography

12.1 Highly Recommended

UNIX for the Impatient, Paul W. Abrahams & Bruce R. Larson (Addison-Wesley Publishing
Company, 1992, ISBN 0-201-55703-7). (A current favorite. Recommended in the CIS Department
for Unix beginners.)

UNIX in a Nutshell for BSD 4.3: A Desktop Quick Reference For Berkeley (O’Reilly & Associates,
Inc., 1990, ISBN 0-937175-20-X). (A handy reference for BSD.)

UNIX in a Nutshell: A Desktop Quick Reference for System V & Solaris 2.0 (O’ Reilly & Associates,
Inc., 1992, ISBN 0-56592-001-5). (A handy reference for SysV and Solaris 2.)

The UNIX Programming Environment, Brian W. Kernighan & Rob Pike (Prentice Hall, 1984). (A
classic. For serious folks.)

When You Can’t Find Your UNIX System Administrator, Linda Mui (O’Reilly & Associates, Inc.,
1995, ISBN 1-56592-104-6).

UNIX Power Tools, Jerry Peek, Tim O’Reilly, and Mike Loukides (O’Reilly & Associates, 1993,
ISBN 0-679-79073-X). (Includes a CDROM of useful software for various OSs.)

12.2 Assorted Others

Understanding UNIX: A Conceptual Guide, James R, Groff & Paul N. Weinberg (Que Corporation,
1983).

Exploring the UNIX System, Stephen G. Kochan & Patrick H. Wood (SAMS, a division of
Macmillan Computer Publishing, 1989, ISBN 0-8104-6268-0).

Learning GNU Emacs, Debra Cameron and Bill Rosenblatt (O’Reilly & Associates, 1992, ISBN
0-937175-84-6).

UNIX for Dummies, John R. Levine & Margaret Levine Young (IDG Books Worldwide, Inc., 1993,
ISBN 0-878058-58-4).

A Practical Guide to UNIX System V, Mark G. Sobell (The Benjamin/Cummings Publishing
Company, Inc., 1985, ISBN 0-80-530243-3).

UNIX Primer Plus, Mitchell Waite, Donald Martin, & Stephen Prata, (Howard W. Sams & Co., Inc.,
1983, ISBN 0-672-30194-6).

An Introduction to Berkeley UNIX, Paul Wang, (Wadsworth Publishing Company, 1988).

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 131

A Short Unix Bibliography

Unix Shell Programming, Stephen G. Kochan & Patrick H. Wood (Hayden Book Co., 1990, ISBN
0-8104-6309-1).

The Unix C Shell Field Guide, Gail Anderson and Paul Anderson (Prentice Hall, 1986, ISBN
0-13-937468-X).

A Student’s Guide to UNIX, Harley Hahn. (McGraw-Hill, 1993, ISBN 0-07-025511-3).

Tricks of the UNIX Masters, Russell G. Sage (Howard W. Sams & Co., Inc., 1987, ISBN
0-672-22449-6),

132 © 1996 Frank IFiamingo, Linda DeBula, Linda Condron Intreduction to Unix

Highly Recommended

CHAPTER 12 A Short Unix Bibliography

12.1 Highly Recommended

UNIX for the Impatient, Paul W. Abrahams & Bruce R. Larson (Addison-Wesley Publishing
Company, 1992, ISBN 0-201-55703-7). (A current favorite. Recommended in the CIS Department
for Unix beginners.)

UNIX in a Nutshell for BSD 4.3: A Desktop Quick Reference For Berkeley (O’Reilly & Associates,
Inc., 1990, ISBN 0-937175-20-X). (A handy reference for BSD.)

UNIX in a Nutshell: A Desktop Quick Reference for System V & Solaris 2.0 (O’ Reilly & Associates,
Inc., 1992, ISBN 0-56592-001-5). (A handy reference for SysV and Solaris 2.)

The UNIX Programming Environment, Brian W. Kernighan & Rob Pike (Prentice Hall, 1984). (A
classic. For serious folks.)

When You Can’t Find Your UNIX System Administrator, Linda Mui (O’Reilly & Associates, Inc.,
1995, ISBN 1-56592-104-6).

UNIX Power Tools, Jerry Peck, Tim O’Reilly, and Mike Loukides (O’Reilly & Associates, 1993,
ISBN 0-679-79073-X). (Includes a CDROM of useful software for various 0Ss.)

12.2 Assorted Others

Understanding UNIX: A Conceptual Guide, James R. Groff & Paul N. Weinberg (Que Corporation,
1983).

Exploring the UNIX System, Stephen G. Kochan & Patrick H. Wood (SAMS, a division of
Macmillan Computer Publishing, 1989, ISBN 0-8104-6268-0).

Learning GNU Emacs, Debra Cameron and Bill Rosenblatt (O’Reilly & Associates, 1992, ISBN
0-937175-84-6).

UNIX for Dummies, John R. Levine & Margaret Levine Young (IDG Books Worldwide, Inc., 1993,
ISBN 0-878058-58-4).

A Practical Guide to UNIX System V, Mark G. Sobell (The Ben}amm/Cummmgs Publishing
Company, Inc., 1985, ISBN 0-80-530243-3).

UNIX Primer Plus, Mitchell Waite, Donald Martin, & Stephen Prata, (Howard W. Sams & Co., Inc.,
1983, ISBN (-672-30194-6).

An Introduction to Berkeley UNIX, Paul Wang, (Wadsworth Publishing Company, 1988).

Introduction to Unix © 1996 Frank Fiamingo, Linda DeBula, Linda Condron 131

A Short Unix Bibliography

Unix Shell Programming, Stephen G. Kochan & Patrick H. Wood (Hayden Book Co., 1990, ISBN
0-8104-6309-1).

The Unix C Shell Field Guide, Gail Anderson and Paul Anderson '(Prentice Hall, 1986, ISBN
0-13-937468-X).

A Student’s Guide to UNIX, Harley Hahn. (McGraw-Hill, 1993, ISBN 0-07-025511-3).

Tricks of the UNIX Masters, Russell G. Sage (Howard W. Sams & Co., Inc., 1987, ISBN
0-672-22449-6).

132 © 1996 Frank Fiamingo, Linda DeBula, Linda Condron Introduction to Unix

An Introduction to the Z Shell

Paul Falstad
pf@z-code.com

Bas de Bakker
bas@phys.uva.nl

An Introduction to the Z Sheli

Paul Falstad
pf@z-code.com

Bas de Bakker
bas@phys.uva.nl

Introduction

zsh is a shell designed for interactive use, although it is also a powerful scripting language.
Many of the useful features of bash, ksh, and tesh were incorporated into zsh; many original fea-
tures were added. This document details some of the unique features of zsh. It assumes basic
knowledge of the standard UNIX shells; the intent is to show a reader already familiar with one
of the other major shells what makes zsh more useful or more powerful. This document is not at
all comprehensive; read the manual entry for a description of the shell that is complete and con-
cise, although somewhat overwhelming and devoid of examples.

The text will frequently mention options that you can set to change the behaviour of zsh, You
can set these options with the command

% setopt opfionname
and unset them again with
% unsetopt oplionname

Case is ignored in option names, as are embedded underscores.

Filename Generation

Otherwise known as globbing, filename generation is quite extensive in zsh. Of course, it has all
the basics: :

% 1s

Makefile file.pro foo.o main.o q.c run?34 stuff
bar.o foo link morestuff runl23 run240 sub
file.h foo.c main.h pipe run? run303

% ls *.c

foo.c g.c

% 1ls *.[co]

har.o foo.c foo.o main.o (g.c

% ls foo.?

foo.c foo.o

% 1ls *.["c]

bar.o file.h foo.o main.h main.o
% ls *.["oh]

foo.c g.c

Also, if the EXTENDEDGLOR option is set, some new features are activated. For example, the °
character negates the pattern following it:

% setopt extendedglob
% 1ls -4 "*.c

Makefile file.pro link morestuff run2 run303
bar.o foo main.h pipe run?i34 stuff
file.h foo.o main.o runizi run24{ sub

% igs -4 "*.*

Makefile 1link pipe run2 run24g stuff

foo morestuff runl23 run234 run303 sub

% 1s -d "Makefile

bar.o foo link morestuff runl23 runz4£0 sub
file.h foo.c main.h pipe run2 runiil
file.pro foo.o main.o g.C run234 stuff

% 1ls -d *. ¢

.rhosts bar.o file.h file.pro foo.o main.h main.o

“An expression of the form <x~y> matches a range of integers:

% ls run<200-300>
run234 run24f

% 1ls run<300-400>
run3f3

% is run<-200>
runl22 run?2

% ls run<300->

run303
% 1ls run<>
runl23 run2 runz34 run240 run303

The NUMERICGLOBSORT option will sort files with numbers according to the number. This
will not work with 1s as it resorts its arguments:
% setopt numericglebsort

% echo run<>
run2 runl23 run234 run240 run3ifl

Grouping is possible:

% 1ls (foo|bar).*

bar.c foo.¢ foo.o

% 1s *.(c|o|pro)

bar.o file.pro foo.c foo.o main.oc qg.c

Also, the string **/ forces a recursive search of subdirectories:

% ls -R

Makefile file.pro foo.o main.o q.¢ runz34 stuff
bar.o foo link morestuff runi23 run240 sub
fiie.h foo.c main.h pipe run2 run303
morestuff:

stuff:

file =xxx VYY

stuff/xux:
foobar

stuff/yyy:

frobar

% ls **/*bar

stuff/xxx/foobar stuff/yyy/frobar

% lg **+/f*

file.h foo foo.o stuff/xxx/foobar
file.pro foo.c stuff/file stuff/yyy/frobar
% ls *bar*

bar.o

% lsg **/*bar*

bar.o stuff/xxx/foobar stuff/yvy/frobar

% ls stuff/**/*bar*

stuff/xxx/foobar stuff/yyy/frobar

It is possible to exclude certain files from the patterns using the ~ character. A pattern of the
form *.c~bar.c lists all files matching *. ¢, except for the file bar.c.

% 1s *.c

foo.c foobk.c bar.c

% lg *.¢"bar.c

foo.c foob.c

% lg *.c7E*

bar.c

One can add a number of qualifiers to the end of any of these patterns, to restrict matches to cer-
tain file types. A qualified pattern is of the form

pattern (...}
with single-character qualifiers inside the parentheses.

% alias 1i='ls -dF’

% 1 *
Makefile foo* main.h g.c run240
bar.o foo.c main.o runl23 run303
file.h foo.o morestuff/ runz stuff/
file.pro link@ pipe rundi4 sub
% 1 *{/)
morestuff/ stuff/
% 1 * (@)
1ink@
T 1 *(*)
foo* linka@ morestuff/ stuff/
% 1 *(x)
foo* linke morestuff/ stuff/
% 1 *(X)
foo* 1ink@ morestuff/ stuff/)
- % 1 *{R)
bhar.o foo* link@ morestuff/ runi23 runz40
file.h foo.c main.h pipe run? run3Q3

file.pro foo.o main.o g.c run234 stuff/

-4 -

Note that *(x) and *{*) both match executables. *(x%) matches files executable by others, as

opposed to * (x), which matches files executable by the owner. *{R) and *(r) match readable :
files; * (W) and *{w), which checks for writable files. * (W) is especially important, since it checks
for world-writable files:

5 1 *(w)

bar.o foo* linke morestuff/ runl23 run240
file.h foo.c main.h pipe runl run3(3
file.pro foo.o main.o g.c run234 stuff/
% 1 *{w)

link@ run24{

% 1 -1 link run24¢

irwxrwxrwx 1 pfalstad 10 May 23 18:12 link -> /usr/bin/
~rw-rw-rw- 1 pfalstad 0 May 23 18:12 run240

If you want to have all the files of a certain type as well as all symbolic links pointing to files of
that type, prefix the qualifier with a -:

F 1 *(-/)
link@ morestuff/ stuff/

You can filter out the symbolic links with the ~ character:

& 1 *(W"@)

runz4l

% 1 *(x) .
foo* link@ morestuff/ stuff/ .
% 1 *(x"@/)

foo*

To find all plain files, you can use .:

T 1 *(.)

Makefile file.h foo* foo.o main.o runl23 run234 run303
bar.o file.pro foo.c main.h g.¢ run? run2dl sub
F 1 *({".}

1link@ merestuff/ pipe stuff/

% 1 5*%(.)

stuff/ sub

Tl *p

pipe

% 1 -1 *(p)

prw-r--r-- 1 pfalstad 0 May 23 18:12 pipe

*(U) matches all files owned by you. To search for all files not owned by you, use * (“U):

% 1 -1 *("u)

YW —————— 1 subbaraoc 29 May 23 18:13 sub
This searches for setuid files:

1 -1 *(s3)

-rwsr-xr-x 1 pfalstad 16 May 23 18:12 foo*

This checks for a ecertain user’s files:

% 1 -1 *(u[subbaraol)
“LW——— e —— 1 subbarao 2% May 23 18:13 sub

Startup Files
There are five startup files that zsh will read commands from:

$ZDOTDIR/ . zshenv -
SZDOTDIR/ . zprofile
SEDOTDIR/ . zshre
$ZDOTDIR/ .zlogin
$ZDOTDIR/ . zlogout

If ZDOTDIR is not set, then the value of HOME is used; this is the usual case.

-5 -

.zshenv is sourced on all invocations of the shell, unless the -f£ option ig set. It should contain
commands to set the command search path, plus other important environment wvariables.
.zshenv should not contain commands that produce output or assume the shell is attached to a
tty. '

.zshrc is sourced in interactive shells. It should contain commands to set up aliases, functions,
options, key bindings, ete.

.zlagin is sourced in login shells. It should contain commands that should be executed only in
login shells. .zlogout is sourced when login shells exit. .zprofile is similar to .zlogin,
except that it is sourced before .zshrc. .zprofile is meant as an alternative to .zlogin for
ksh fans; the two are not intended to be used together, although this could certainly be done if
desired. .zlogin is not the place for alias definitions, options, environment variable settings,
ete.; as a general rule, it should not change the shell environment at all. Rather, it should be
used to set the terminal type and run a series of external commands (fortune, msgs, ete).

Shell Functions

zsh also allows you to create your own commands by defining shell functions. For example:

T yp O {
> vpmatch $1 passwd.byname
>}

% yp pfalstad
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

This function looks up a user in the NIS password map. The $1 expands to the first argument to
yp. The function could have been equivalently defined in one of the following ways:

% function yp {
vpmatch $1 passwd.byname

>
>}

% function yp () {
> yvpmatch $1 passwd.byname
>
%

1
function yp () ypmatch $1 passwd.byname

Note that aliases are expanded when the function definition is parsed, not when the function is
executed, For example:

% alias ypmatch=echo
% vp pfalstad
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

Since the alias was defined after the function was parsed, it has no effect on the function’s execu-
tion. However, if we define the function again with the alias in place:

% function yp () { ypmatch 51 passwd.byname }
% vp pfalstad
pfalstad passwd.byname

it is parsed with the new alias definition in place. Therefore, in general you must define aliases
before functions.

We can make the function take multiple arguments:

% unalias ypmatch

T vp () {

> for i

> do ypmatch $i passwd.byname
> done

>}

% yp pfalstad subbarac sukthnkr

pfalstad: *:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh
subbarao:;*:3338:35:Kartik Subbarao:/u/zsubbarao:/usr/princeton/bin/zsh
sukthnkr:*:1267:35:Rahul Sukthankar:/u/sukthnkr:/usr/princeton/bin/tesh

The for i loops through each of the function’s arguments, setfing i equal to each of them in
turn. We can also make the function do something sensible if no arguments are given:

T yp () {

= if (C $# ==0 N

> then echo usage: yp name ...; fi

> for i; do ypmatch $i passwd.byname; done
>}

% vp

usage: yp name ...
% yp pfalstad sukthnkr

pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh
sukthnkr:*:1267:35:Rahul Sukthankar:/u/sukthnkr:/usr/princeton/bin/tecsh

$# is the number of arguments supplied to the function. If it is equal to zero, we print a usage
message; otherwise, we loop through the arguments, and ypmatch all of them.

Here’s a function that selects a random line from a file:

% randline (} (

> integer z=%{wc -1 <$%1)

> sed -n $[RANDOM % z + 1llp %1

>}

% randline /etc/motd

PHOENIX WILL BE DOWN briefly Friday morning, 5/24/91 from 8 AM to
% randline /etc/motd

Sun0S5 Release 4.1.1 (PHOENIX) #19: Tue May 14 19:03:15 EDT 1991

% randline /etc/motd

| Please use the 'msgs' command to read announcements. Refer to the |
% echo $z

%

randline has a local variable, z, that holds the number of lines in the file. $[RANDOM % z +
1] expands to a random number between 1 and z. An expression of the form $[...] expands to
the value of the arithmetic expression within the brackets, and the RANDOM variable returns a
random number each time it is referenced. % is the modulus operator, as in C. Therefore, sed
-n $[RANDOM%z+1]p picks a random line from its input, from 1 to z.

Function definitions can be viewed with the functions builtin:

% functions randline
randline {) {
integer z=%{wc -1 <%1)
sed -n $[RANDOM % z + 1l]lp §1

}

% functions

yp () {
if let s# ==

then
echo usage: yp name

fi
for i
do
ypmatch $i passwd.byname

done

)
randline () ¢
integer z=%(wc -1 <%1)
sed -n $[RANDOM % z + 1l]lp $1

1

Here’s another one:

""""" % cx () (chmod +x $* }
% 1s -1 foo bar
-rw-r—--r-- 1 pfalstad 29 May 24 04:38 bar
-rw-r--r-- 1 pfalstad 29 May 24 04:38 foo

% ox foo bar

% 1s -1 foo bar

-rwxr-xr-x 1 pfalstad 29 May 24 04:38 bar
-rwxr-xr~x 1 pfalstad 29 May 24 04:38 foo

Note that this could also have been implemented as an alias:

% chmod 644 foo har

% alias cx=‘'chmod +x*

% c¢x foo bar

% 1ls ~1 foo bar

-rwxr~-xr-x 1 pfalstad 29 May 24 04:38 bar
~rwRr-xr-x 1 pfalstad 29 May 24 04:38 foo

Instead of defining a lot of functions in your .zshre, all of which you may not use, it is often bet-
ter to use the autoload builtin. The idea is, you create a directory where function definitions are
stored, declare the names in your .zshrc, and tell the shell where to look for them. Whenever
you reference a function, the shell will automatically load it into memory.

% mkdir /tmp/funs

% cat >/tmp/funs/vyp

vpmatch $1 passwd, byname

“D

% cat >/tmp/funs/cex

chmod +x §*

)

% FPATH=/tmp/funs

% autoleoad cx vp

% functions ex yp

undefined ox ()

- undefined vp {)
% chmod 755 /tmp/funs/{cx,yp}
% vp egsirer
egsirer:*:3214:35:Emin Gun Sirer:/u/egsirer:/bin/sh
% functions yp
yp O {

ypmatch $1 passwd.byname
}

This idea has other benefits. By adding a #! header to the files, you can make them double as
shell scripts. (Although it is faster to use them as functions, since a separate process is not cre-
ated.)

% ed /tmp/funs/vyp

25

i

#t /usr/leocal/bin/zsh

W

42

a

% </tmp/funs/vp

#1 /usr/local/bin/zsh

yvpmatch $1 passwd.byname
o % /tmp/funs/yp sukthnkr

sukthnkr:*:1267:35:Rahul Sukthankar:/u/sukthnkr:/usr/princeton/bin/tcsh

Now other people, who may not use zsh, or who don’t want to copy all of your .zshrc, may use
H these functions as shell scripts.

Directories

One nice feature of zsh is the way it prints directories. For example, if we set the prompt like
this:

phoenix% PROMPT='%"> *
"> cd srec
“/src>

the shell will print the current directory in the prompt, using the ~ character. However, zsh is
smarter than most other shells in this respect:

“/src> ¢d “subbarao
"subbaraoc> ¢d “maruchck
“maruchck> c¢d iib
"maruchck/Lib> cd fun
"maxuchck/1ib/fun> foo=/usr/princeton/common/src
"maruchck/lib/fun> cd ~“foo
“foo> ecd ..
/usr/princeton/common> cd src
“foo>» e¢d news/natp
“foo/news/nntp> cd inews
“foo/news/nntp/inews>

Note that zsh prints other users’ directories in the form ~user. Also note that you can set a
parameter and use it as a directory name; zsh will act as if foo is a user with the login directory

/usr/princeton/common/src. This is convenient, especially if youre sick of seeing prompts
like this:

phoenix: /usr/princeton/common/src/X.V911R4/contrib/clients/xv/docs>

If you get stuck in this position, you can give the current directory a short name, like this;

/fusr/princeton/common/src/news/nntp/inews> inews=$PWD
/usr/princeton/common/src/news/nntp/inews> echo ~inews
/usr/princeton/common/sra/news/nntp/ inews

Tinews>

When you reference a directory in the form ~inews, the shell assumes that you want the direc-
tory displayed in this form; thus simply typing echo ~inews or cd ~inews causes the prompt
to be shortened. You can define a shell function for this purpose:

“inews> namedir {) { $1=$PWD ; : ~&1 }
“inews> cd /usr/princeton/bin
/usr/princeton/bin> namedir pbin
“phin> cd /var/spool/mail
/var/spool/mail> namedir spool

“spool> ¢d .msgs

“spool/ .msgs>

You may want to add this one-line function to your .zshrc.

zsh can also put the current directory in your title bar, if you are using a windowing system.
One way to do this is with the chpwd function, which is automatically executed by the shell
whenever you change directory. If you are using xterm, this will work:

chpwd (} { print -Pn *"{12;%~"G’ }

The -P option tells print to treat its arguments like a prompt string; otherwise the 3~ would not
be expanded. The -n option suppresses the terminating newline, as with echo.
If you are using an IRIS wsh, do this:

chpwd {) { print -Pn '\220%1.y%~\234')

The print ~D command has other uses. For example, to print the current directory to standard
output in short form, you can do this:

% print -D $PWD
“subbarao/src

and to print each component of the path in short form:
"""" % print -D $path
/bin /usr/bin “lochin “lochin/X11l ~/bin

Divectory Stacks

If you use csh, you may know about directory stacks. The pushd command puts the current
directory on the stack, and changes to a new directory; the popd command pops a directory off
the stack and changes to it.

phoenix% cd

phoenix% PROMPT='Z %7>
7z = pushd /tmp

/tmp ~

Z /tmp> pushd /usr/etc
Jusr/ete /tmp 7

7 /usr/ete> pushd /usr/bin
/usr/bin /usr/etec /tmp ~
7z /usr/bin> popd
/usr/etc /tmp ~

Z Jusr/etc> popd

/tmp ~

2 /tmp> pushd /etc

/etc /tmp ~

Z /etc> popd

Jtmp ~

zsh’s directory stack commands work similarly, One difference is the way pushd is handled if no
arguments are given. As in csh, this exchanges the top two elements of the directory stack:

Z /tmp> dirs
Jtmp ~

7 /tmp> pushd
~ /tmp

unless the stack only has one entry:

2 7> popd
/ tmp
i Z /tmp> dirs
! /tmp
Z /tmp> pushd
o/ tmp
7 ">

or unless the PUSHDTOHOME option is set:

Z "> setopt pushdtohome
Z "> pushd
©T /tmp

As an alternative to using directory stacks in this manner, we can get something like a directory
history by setting a few more options and parameters:

-10 -

"> DIRSTACKSIZE~S

"> setopt autopushd pushdminus pushdsilent pushdtohome
"> alias dh='dirs -v'

> cd /tmp

/tmp> ed fusr

/usr> ed bin

/usr/bin> cd ../pub

fusx/pub> dh

0 /usr/pub
1 /usr/bin
2 /usr

3 / tmp

4 - .
/usr/pub> cd -3
/tmp> dh

0 /tmp

1 /usr/pub
2 /usr/bin
3 /usr

4 -

ftmp> lg =2/d4f
/usr/bin/df

/emp> od -4

>

Note that =2 expanded to the second directory in the history list, and that cd -3 recalled the
third directory in the list.

You may be wondering what all those options do. AUTOPUSHD made cd act like pushd. (alias
cd=pushd is not sufficient, for various reasons.) PUSHDMINUS swapped the meaning of cd +1
and cd -1; we want them to mean the opposite of what they mean in csh, because it makes
more sense in this scheme, and it’s easier to type:

“> dh
/ tmp
/usr/pub
/usr/bin
/usr
> unsetopt pushdminus
> cd +1
/tmp> dh

WO

/tmp

/usr/pub
/usr/bin
4 /usy
Jtmp> cd +2
/usr/pub>

PUSHDSILENT keeps the shell from printing the directory stack each time we do a cd, and
PUSHDTOHOME we mentioned earlier:

/usr/pub> unsetopt pushdsilent
/usr/pub> ¢d /etc

/ete fusr/pub /tmp ~ /usr/bin /usrt
fete> cd

© Jete Jfusx/pub /tmp T /usr/bin /usr
"> unsetopt pushdtohome

> ed

fete © fusr/pub /tmp ~ /usr/bin /usr
/et

DIRSTACKSIZE keeps the directory stack from getting too large, much like HISTSIZE:

W By s O

-11-

/etc> setopt pushdsilent

/ete> cd /
/> cd /

======= /> Cd /

' /> cd [/
/> cd /
/> cd /
/> cd /
/> cd /
/> dh
0 /

,,,,,, 1 /
2 /
3 /
4 /
5 /
6 /
7 /

Command/Process Substitution

Command substitution in zsh can take two forms, In the traditional form, a command enclosed
in backquotes (*...*) is replaced on the command line with its output. This is the form used by
the older shells. Newer shells (like zsh) also provide another form, $(...). This form is much
easier to nest.

% lg -1 ‘echo /vmunix:®

-rwxXr-xr-x 1 root 1209702 May 14 19:04 /vmunix
% 1s -1 ${echo /vmunix)

~rwxr-®xr-x 1 root 1209702 May 14 19%:04 /vmunix
% who | grep mad

subbarao ttyt7 May 23 15:02 (mad55sx15. Prince)
pfalstad ttyul May 23 16:25 (mad55sx14.Prince)
subbarac ttyub May 23 15:04 (mad55sx15. Prince)
pfalstad ttyv3 May 23 16:25 (madb5sx14.Prince)

% who | grep mad | awk ‘{print $2}’

ttyt?

ttyul

ttyub

tLyv3

% cd /dev; ls -1 $(who |

> grep $(echo mad} |

> awk ‘{ print £2 }’)

crwx-w~---~ 1 subbarao 20, 71 May 23 18:35 ttyt7
s crw--w-~-- 1 pfalstad 20, 81 May 23 18:42 ttyul
crwXx-w---- 1 subbarao .20, 86 May 23 18:38 ttyué
crw--w-~-- 1 pfalstad 20, 99 May 23 18:41 ttywv3
Many common uses of command substitution, however, are superseded by other mechanisms of
zsh:
% 1s -1 ‘tey?
crw-rw~rw- 1 root 20, 28 May 23 18:35 /dev/ttygc
% 1s -1 $TTY
crw-rw-rw- 1 root 20, 28 May 23 18:35 /dev/ttyqgc
% 1ls -1 ‘which rn®
o ~rwxr-xr-x 1 root 172032 Mar 6 18:40 /usr/princeton/bin/rn
: % ls -1 =rn
-rwxr-xr-x 1 root 172032 Mar 6 18:40 fusr/princeton/bin/rn

A command name with a = prepended is replaced with its full pathname. This can be very conve-
nient. If it’s not convenient for you, you can turn it off:

-12-

% is

=foo =bar

% ls =foo =bar
zsh: foo not found
% setopt noequals
% ls =foo =bar
=foo =bar

Another nice feature is process substitution:

% who | fgrep -f =(print -1 root lemke shgchan subbarao)
root console May 19 10:41

lemke ttygld May 22 10:05% {narnia:0.0)

lemke ttyr7 May 22 10:05 (narnia:0.4)

lemke ttyrd May 22 16:05 (narnia:0.¢)

shgchan ttysi May 23 16:52 (gaudi.Princekon.)
subbarac ttyt7 May 23 15:02 (mad55sx15. Prince)
subbarac ttyué May 23 15:04 (mad55sx15.Prince)
shgchan ttyvb May 23 16:51 {gaudi.Princeton.}

A command of the form =(...) is replaced with the name of a file containing its output. (A com-
mand substitution, on the other hand, is replaced with the output itself.) print -1 is like echo,
excepts that it prints its arguments one per line, the way fgrep expects them:

% print -1 foo bar
foo
baxr

We could also have written:

% who | fgrep -f =(echo ‘root
> lemke

> shgchan

> subbarao’)

Using process substitution, you can edit the output of a command:

% ed =(who | fgrep -f ~/.friends)

355

g/lemke/d

w /tmp/fiibar

226

=¢

% cat /tmp/filbar

root console May 19 10:41

shgchan ttysl May 23 16:52 {gaudi.Princeton.)
subbarao ttyt7 May 23 15:02 {mad55sx15. Prince)
subbarao ttyub May 23 15:04 (mad55sx15.Prince)
shgchan ttyvb May 23 16:51 (gaudi.Princeton.)

or easily read archived mail:

-18-

% mail -f =(zcat "/mail/oldzshmail.Z)
"ftmp/zshal6024¥: 84 messages, 0 new, 43 unread
> 1 U TO: pfalstad, zsh (10}

2 U nytim!timBuunet.uu.net, Re: Zsh on Sparcl /Sunos 4.0.3

3 U JAM$TPNG@utrcgw.utc.com, zsh fix (15)

4 U djm@eng.umd.edu, way to find out if rumning zsh? (25)

5 U djim@eng.umd.edu, Re: way to £ind out if running zsh? (17}
& r djm@eng.umd.edu, Meta . (18)

7 U jack@es.glasgow.ac.uk, Re: problem building zsh (147)

8 U nytim!tim@uunet.uu.net, Re: Zsh on Sparcl /SundS 4.0.3

9 ursaljmd, Another fix... (61}

10 U pplacewa@bbn.com, Re: v18i0B4: Zsh 2.00 - A small complaint (36}
11 U 1lubkin@cs.rochester.edu, POSIX job control (34)

12 U vyalelbronson!tan@uunet.UU.NET

13 U brett@rpi.edu, zsh (36}

14 5 subbaraoc, zsh sucks!i!! (286)

15 U snibru!d241s00B1d241s0l13lala@relay.EU.net, zsh (165)

16 U nytim!tim@uunet. UU.NET, Re: Zsh con Sparcl /Sun0S 4.0.3

17 U subbarao, zsh is a junk shell (43}

18 U amaranth@vela.acs.cakland.edu, zsh (33)

43u/84 1: =
% 1ls -1 /tmp/zshal6024
/tmp/zshal6024 not found

Note that the shell creates a temporary file, and deletes it when the command is finished.

% diff =(lg) =(ls -F)
3c3
< forfune

> fortune*
1Gcl0
< strfile

> strfile®

If you read zsh’s man page, you may notice that <{...) is another form of process substitution
which is similar to =(...). There is an important difference between the two. In the <{...) case,
the shell creates a named pipe (FIFQ) instead of a file. This is better, since it does not fill up the
file system; but it does not work in all cases. In fact, if we had replaced =(...) with <{...} in the
examples above, all of them would have stopped working except for fgrep -f <(..}). You can
not edit a pipe, or open it as a mail folder; £grep, however, has no problem with reading a list of
words from a pipe. You may wonder why diff <(foo) bar doesn’t work, since foo | diff
- bar works; this is because diff creates a temporary file if it notices that one of its arguments
is -, and then copies its standard input to the temporary file.

>{...) is just like < (...} except that the command between the parentheses will get its input from
the named pipe.

% dvips -o >{ipx) =zsh.dvi

Redirection

Apart from all the regular redirections like the Bourne shell has, zsh can do more. You can send
the output of a command to more than one file, by specifying more redirections like '

% echo Hello World >filel >filel

and the text will end up in both files. Similarly, you can send the output to a file and inte a pipe:
% make > make.log | grep Error

The same goes for input, You can make the input of a command come from more than one file.
% sort <filel <file2 <file3

The command will first get the contents of filel as its standard input, then those of file2 and

- 14 -

finally the contents of file3. This, too, works with pipes.

% cut -d: -fl /etc/passwd | sort <newnames

The sort will get as its standard input first the output of cut and then the contents of newnames.

Suppose you would like to watch the standard output of a command on your terminal, but want

to pipe

the standard error to another command. An easy way to-do this in zsh is by redirecting

the standard error using 2> > (...).

% find / -pame games 2> >(grep -v 'Permission’ > realerrors)

The above redirection will actually be implemented with a regular pipe, not a temporary named

pipe.

Aliasing

Often-used commands can be abbreviated with an alias:

% alias uc=uncompress
% 1ls

hanoi.?Z

% uc hanoi

% 1s

hanoi

or commands with certain desired options:

Aliages

% alias fm='finger -m’
% fm root

Login name: rooct In real 1ife: Operator
Directory: / Shell: /bin/csh

On since May 19 10:41:15 on console 3 days 5 hours Idle Time
No unread mail

No Plan.

% alias lock='lock -p ~60000°

% lock

lock: /dev/ttyrd on phoenix. timeout in 60000 minutes
time now is Fri May 24 04:23:18 EDT 1991

Key:

% alias 1='1s -AF’

% 1 /

.bash_history kadb*
.bashrc lib@

.¢shre licensed/
.exre lost+found/
.login macsyma

can also be used to replace old commands:

% alias greb=egrep ps=sps make=gmake
% alias whoami='echo root’

$ whoami

rookt

or to define new cnes:

-15 -

% cd /
% alias sz=‘ls -1 | sort -n +3 | tail -10'
% sz
drwxr-sr-x 7 bin 3072 May 23 11:59 etc
Arwxrwxrwx 26 root 5120 May 24 04:20 tmp
drwxr-xr-x 2 root 8192 Dec 26 19:34 lost+found
drwxr-sr-x 2 bhin 14848 May 23 18:48 dev
v ~r--r—--r-—- 1 root 140520 Dec 26 20:08 boot
-rwxr-xr-x 1 root 311172 Dec 26 20:08 kadb
~-TWXY-Xr-x 1 root 1209695 Apr 16 15:33 vmunix.old
~TWXr-Xr-x 1 root 1209702 May 14 19:04 vmunix
"""" -rwxyr-¥xr-x 1 root 1209758 May 21 12:23 vmunix.new.kernelmap.old
-rwxr-xr-x 1 reot 1711848 Dec 26 20:08 vmunix.ocrg
% cd
% alias rable='ls -AFtrd *(R)’ nrable=’'ls -AFtxd *("R)’
% rable
README func/ bin/ pub/ News/ src/
nicecolors etc/ scr/ tnp/ iris/ zZah*
s % nrable
Mailboxes/ mail/ notes

(The pattern *(R) matches all readable files in the current directory, and *("R) matches all
unreadable files.)

Most other shells have aliases of this kind {(command aliases). Ilowever, zsh also has global
aliases, which are substituted anywhere on a line. Global aliases can be used to abbreviate fre-
quently-typed usernames, hostnames, etc.

% alias -g me=pfalstad gun=egsirer mim=maruchck
% who | grep me '
pfalstad ttypl May 24 03:39 (mickey.Princeton)

pfalstad ttyps May 24 03:42 (mickey.Princeton)

% fm gun

Login name: egsirer In real life: Emin Gun Sirer
Directory: /u/egsirer Shell: /bin/sh

tast login Thu May 23 19:05 on ttyg3 from bow.Princeton.ED
New mail received Fri May 24 02:30:28 1991;

unread since Fri May 24 02:30:27 1991
% alias -g phx=phoenix.princeton.edu warc=wuarchive.wustl.edu
% ftp warc
Connected to wuarchive.wustl.edu.

Here are some more intereating uses.

% alias -g M='| more' GF='| fgrep -f “/.friends’
% who M # pipes the oulput of who through more
% who GF # see if your friends are on
' % w GF 4 see what your friends are doing

Another example makes use of zsh’s process substitution. If you run NIS, and you miss being
able to do this: ‘

% grep pfalstad /etc/passwd
you can define an alias that will seem more natural than ypmatch pfalstad passwd:

% alias -g PASS='<(ypcat passwd}’
% grep pfalistad PASS
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/pin/zsh

If you're really crazy, you can even call it /ete/passwd:

% alias -g /etc/passwd='<(ypcat passwd)’
e % grep pfalstad /etc/passwd
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

The last example shows one of the perils of global aliases; they have a lot of potential to cause
confusion. For example, if you defined a global alias called | (which is possible}, zsh would begin

- 16 -

to act very strangely; every pipe symbol would be replaced with the text of your alias. To some
extent, global aliases are like macros in C; discretion is advised in using them and in choosing
names for them, Using names in all caps is not a bad idea, especially for aliases which introduce
shell metasyntax (like M and GF above).

Note that zsh aliases are not like csh aliases. The syntax for defining them is different, and they
do not have arguments. All your favorite csh aliases will probably not work under zsh. For
example, if you try:

alias rm mv '\!* /tmp/wastebasket’

no aliases will be defined, but zsh will not report an error. In csh, this line defines an alias that
makes rm safe---files that are r=’d will be moved to a temporary directory instead of instantly
destroyed. In zsh’s syntax, however, this line asks the shell to print any existing alias definitions
for rm, mv, or !* /tmp/wastebasket. Since there are none, most likely, the shell will not print
anything, although alias will return a nonzero exit code. The proper syntax is this:

alias rm="mv \!* /tmp/wastebasket’
However, this won't work either:

% rm foo.dvi
zsh: no matches found: 1*

While this makes rm safe, it is certainly not what the user intended. In zsh, you must use a
shell function for this:

% unalias rm

$ rm () { mv $* /tmp/wastebasket }
% rm foo.dvi

% ls /tmp/wastebasket

foo.dvi

While this is much cleaner and easier to read (I hope you will agree), it is not csh-compatible.
Therefore, a script to convert csh aliases and variables has been provided. You should only need
to use it once, to convert all your csh aliases and parameters to zsh format:

% esh

csh>» alias

1 ls -AF

more less

on last -2 t:1 ; who | grep !:1

csh> exit

% c2z >neat_zsh_aliases

% cat neat_zsh_aliases

alias 1='ls -AF-’

alias more='less’

onn () { last -2 81 ; who | grep $1 }

The first two aliases were converted to regular zsh aliases, while the third, since it needed to
handle arguments, was converted to a function. c2z can convert most aliases to zsh format with-
out any problems. However, if you're using some really arcane csh tricks, or if you have an alias
with a name like do (which is reserved in zsh), you may have to fix some of the aliases by hand.

The c2z script checks your esh setup, and produces a list of zsh commands which replicate your
aliases and parameter settings as closely as possible. You could include its output in your startup
file, .zshrc.

History
There are several ways to manipulate history in zsh. One way is to use csh-style | history:
% /usr/local/bin/!:0 1-2*:s/fco/bar/ >>13

If you don’t want to use this, you can turn it off by typing setopt nobanghist. If you are
afraid of accidentally executing the wrong command you can set the HISTVERIFY option. If this
option is set, commands that result from history expansion will not be executed immediately, but
will be put back into the editor buffer for further consideration.

rl

.17 -

If yow're not familiar with ! history, here follows some explanation. History substitutions always
start with a !, commonly called “bang”. After the ! comes an (optional) designation of which
“avent” (command) to use, then a colon, and then a designation of what word of that command to
use. For example, ! -n refers to the command »n commands ago.

% 1ls

foo baxr
% cd foo
% 1-2

is

baz bam

No word designator was used, which means that the whole command referred to was repeated.
Note that the shell will echo the result of the history substitution. The word designator can,
among other things, be a number indicating the argument to use, where 0 is the command.

% /usr/bin/ls foo
foo

% 1:0 bar
/usr/bin/ls bar
bar

In this example, no event designator was used, which tells zsh to use the previous command. A
& specifies the last argument

% mkdir /usr/local/lib/emacs/site-lisp/calc
% cd 1:%
cd /usr/local/lib/emacs/site~lisp/calc

If you use more words of the same command, only the first ¢ needs an event designator.

% make prig >> make.log

make: *** No rule to make target 'prig’. Stop.
% cd src

% 1-2:0 prog >> 1:%

make prog >> make.log

This is different from csh, where a bang with no event designator always refers to the previous
command. If you actually like this behaviour, set the CSHJUNKIEHISTORY option.

% setopt cshjunkiehistory
% '-2:0 progZ >> 1:§
make progZ >> ecshijunkiehistory

Another way to use history is to use the fc command. For example, if you type an erroneous
command: '

% for i in ‘cat /etc/clients:
do

rpu Si

done

zsh: command not found: rpu
zah: command nct found: rpu
zgh: command not found: rpu

typing fc will execute an editor on this command, allowing you to fix it. (The default editor is
vi, by the way, not ed).

- 18-

% fe
48
/rpua/s//rup/p
rup $i
w
49
a
for i in ‘cat fetc/clients:®
do
rup $i
done
beam up 2 days, 10:17, load average: 0.86, 0.80, 0.50
bow up 4 days, B8:41, load average: 0.91, 0.80, 0.50
burn up 17:18, load average: 0.91, 0.80, 0.50
burst up % days, 1:49, load average: 0.95, 0.80, 0.50
tan up 11:14, load average: 0.91, 0.80, 0.50
bathe up 3 days, 17:49, load average: 1.84, 1.79, 1.50
bird up 1 day, 2:13, load average: 1.95, 1.82, 1.8%1
bonnet up 2 days, 21:18, load average: 0.%3, 0.80, 0.50

A variant of the fc command is r, which redoes the last command, with optional changes:

% echo foo
foo

% r

‘echo foo
foo

% echo foo

foo

% 1 foo=bar
echo bar
bar

Command Line Editing

zsh’s command line editor, ZLE, is quite powerful. It is designed to emulate either emacs or vi;
the default is emacs. To set the bindings for vi mode, type bindkey -v. If your EDITOR or
VISUAL environment variable is vi, zsh will use vi emulation by default. You can then switch to
emacs mode with bindkey -e.

In addition to basic editing, the shell allows you to recall previous lines in the history. In emacs
mode, this is done with P (control-P) or (on many terminals) with the cursor-up key:

% is

- README file mail pub tmp
Mailboxes bin funec nicecolors scr zsh
News etc iris notes src

% echo foobar

foobar

% P

% echo foobar'P

% 1ls ~_

Pressing “P once brings up the previous line (echo foobar); pressing it again brings up the line
before that (1s ~). The cursor is left at the end of the line, allowing you to edit the line if
desired before executing it. In many cases, ZLE eliminates the need for the fc command, since it
is powerful enough to handle even multiline commands:

-19.

for i inabc de
do

echo §$i

done

“P

for i ina b c¢c d e
do
echo $i
done_

e o b O T WV V Vo &®

Now you can just move up to the part you want to change...

% for i inabcde
do

echo $i

done

change it, and execute the new command.

% for i in £ g h 1 j
de

echo $i

done

R

Also, you can search the history for a certain command using ESC-P, this will look for the last
command that started with the (part of the) word at the beginning of the current line. Hitting
ESC-P another time gets you the command before that, ete.

% set ESC.P
% setopt autolist ESC-P
% setopt nocorrect

Another way is to do an incremental search, emacs-style:
& R
% _

i-gearch:

% 1ls /usr/bin
i-gearch: 1

% date > foofile.c
i-gsearch: le

Suppose you have retrieved an old history event in one of these ways and would like to execute
several consecutive old commands starting with this one. "0 will execute the current command
and then put the next command from the history into the editor buffer. Typing ~0 several times
will therefore reexecute several consecutive commands from the history. Of course, you can edit
some of those commands in between.

In addition to completion (see below), TABR performs expansion if possible,

% 1ls *.cTAB
% ls foofile.c fortune.c rnd.¢ strfile.c unstr.c_

For example, suppose you have a bunch of weird files in an important directory:

- 20 -

% 1ls
* ok & ; & % $7??foo dspfok foo.c
trfoo"! A foo rrr

You want to remove them, but you don’t want to damage foo.c. Here is one way to do this:

% rm *TAB
Form VN ONEY NEN NEY N N NI TFoo VTN T VN VEY %\ 0\SY
“foo '\ AW A\ dspfok foo foo.c rrr_

When you expand *, zsh inserts the names of all the files into the editing buffer, with proper
shell quoting. Now, just move back and remove foo.c from the buffer:

FTorm VN VRV AR NFY N N VENTFoo VTN AN N&Y B\ \SY
“foo \'\ AN A dspfok foo rrr

and press return. Everything except foo.c will be deleted from the directory. If you do not want
to actually expand the current word, but would like to see what the matches are, type "Xg.

% rm £*Xg

foo foo.¢

% rm £*_

Here’s another trick; let’s say you have typed this command in;
% gce -o x.out foob.c -g -Wpointer-arith -Wtrigraphs_

and you forget which library you want. You need to escape out for a minute and check by typing
ls /usr/lib, or some other such command; but you don’t want to retype the whole command
again, and you can’t press return now because the current command is incomplete. In zsh, you
can put the line on the buffer stack, using ESC-Q, and type some other commands. The next time
a prompt is printed, the gec line will be popped off the stack and put in the editing buffer auto-
matically; you can then enter the proper library name and press return {or, ESC-@ again and look
for some other libraries whose names you forgot).

A similar situation: what if you forget the option to gec that finds bugs using Al techniques? You
could either use ESC-Q again, and type man gcc, or you could press ESC-H, which essentially
does the same thing; it puts the current line on the buffer stack, and executes the command run-
help gce, where run-help is an alias for man.

Another interesting command is ESC-A. This executes the current line, but retains it in the
buffer, so that it appears again when the next prompt is printed. Also, the cursor stays in the
same place. This is useful for executing a series of similar commands:

% cc grok.c -g -lc -igl -lsun -lmalloc -Bstatic -o b.out
% co fubar.c -g -le -1lgl -lsun -lmalloc -Bstatic -o b.out
% cc fooble.c -g -lc -lgl -lsun -Imalloc -Bstatic -c b.out

The ESC-’ command is useful for managing the shell’s quoting conventions. Let’s say you want to
print this string:

don’t do that; type ‘rm -rf *’, with a \ before the *.
All that is necessary is to type it into the editing buffer:

% don’'t do that; type ‘rm -rf *’, with a \ before the *,
press ESC-’ (escape-quote):

% ‘don’\’''t do that; type ‘\’'’'rm -rf *\'’, with a \ before the *.’
then move to the beginning and add the echo command.

% echo 'don’\‘’t do that; type '\'’xm -rf *'\’’, with a \ before the *.°
don't do that; type 'rm -rf *’, with a \ before the *.

Let’s say you want to create an alias to do this echo command. This can be done by recalling the
line with “P and pressing ESC.’ again:

-91-

% ‘echo ’\'‘don’\N '\V'N 7Nt do that; type ‘N NN rm -xrf
NEINA NN e with a \ before the *. N\
and then move to the beginning and add the command to create an alias.
%alias zooleecho r\fldonl\fl\l\fjf\fjt dc that; type f\lr\r\lll\lrrm
-rE \FIATINNT N, with a \ before the *./\'77

% zoof
don’'t do that; type ‘rm -rf *’, with a \ before the *.

If one of these fancy editor commands changes your command line in a way you did not intend,
you can undo changes with ~_, if you can get it out of your keyboard, or "X"U, otherwise.

Another use of the editor is to edit the value of variables. For example, an easy way to change
your path is to use the vared command:

% vared PATH

> /u/pfalstad/ser:/u/pifalstad/bin/sund: /u/maruchek/scr: /u/subbaraoc/bin: /u/maruc

hek/bin: /u/subbarac/scripts: /usr/princeton/bin: fusr/uch: fusr/bin: /bin: /usr/host
s:/usr/princeton/kin/X11:/./usxr/lang:/./usr/etc:/./etc

You can now edit the path. When you press return, the contents of the edit buffer will be
assigned to PATH.

Completion
Another great zsh feature is completion. If you hit TAB, zsh will complete all kinds of stuff.
Like commands or filenames:

% compTAB
% compress .

% 1s nicTAB
% ls nicecolors _

% 1s /usr/prTAB
% ls /usr/princeton/_

% 1ls -1 =comTAB
% ls -1 =compress _

If the completion is ambiguous, the editor will beep. If you find this annoying, you can set the
NOLISTBEEP option. Completion can even be done in the middle of words. To use this, you will
have to set the COMPLETEINWORD option:

% setopt completeinword
ls /usr/ptonTARB

ls /usr/princeton/
setopt alwaystoend

ls /usx/ptonfAB

ls /usr/princeton/_

P P o8 R gP

You can list possible completions by pressing “Dn

% ls /vmuTAB —beep-

% ls /vmunix,__

% 1s /vmunix"D

viunix vmunix.old
viunix.new. kernelmap.old vmunix.org

Or, you could just set the AUTOLIST option:

% setopt autoclist

% ls /vmuTAB -—beep—

visunix vmunix.old
vmunix.new. kerneimap.old vmunix.org
% 1s /vmunix_

If you like to see the types of the files in these lists, like in 1s -F, you can set the LISTTYPES

.99 .

option. Together with AUTOLIST you can use LISTAMBIGUOUS. This will only list the possi-
bilities if there is no unambiguous part to add:

% setopt listambiguous

% 1ls /vmuTAB —beep—-

% ls /vmunix_TAB —beep—

vmunix viunix.old
vmunix.new.kernelmap.old vmunix.org

If you don't want several of these listings to scroll the screen so much, the ALWAYSLAST
PROMPT option is useful. If set, you can continue to edit the line you were editing, with the
completion listing appearing beneath it.

Another interesting option is MENUCOMPLETE. This affects the way TAB works. Let’s look at
the /vmunix example again:

% setopt menucomplete

1ls /vmuTARB

1s /vmunixTAB

ls /vmunixz.new.kernelmap.oldTARB
ls /vmunix.old_

of P of oe

Each time you press TAB, it displays the next possible completion. In this way, you can cycle
through the possible completions until you find the one you want.

The AUTOMENU option makes a nice compromise between this method of completion and the
regular method. If you set this option, pressing TAB once completes the unambiguous part nor-
mally, pressing the TAB key repeatedly after an ambiguous completion will cycle through the pos-
sible completions.

Another option you could set is RECEXACT, which causes exact matches to be accepted, even if
there are other possible completions:

% setopt recexact

% 1ls /vmuTAB —beep—

vmunix vmunix.eld
vmunix.new.kernelmap.oldé vmunix.org
% ls /vmunix_TAB

% ls /vmunix _

To facilitate the typing of pathnames, a slash will be added whenever a directory is completed.
Some computers don’t like the spurious slashes at the end of directory names. In that case, the
AUTOREMOVESLASH option comes to rescue. It will remove these slashes when you type a
space or return after them.

The fignore variable lists suffixes of files to ignore during completion.

% ls fooTAB —beep—

foofile.c foofile.o

% fignore=(.o \" .bak .junk }
% 1z fooTAB

% 1s foofile.c _

Since foofile.o has a suffix that is in the fignore list, it was not considered a possible comple-
tion of foo.

Username completion is also supported:

% 1ls “pfalTAB
% ls "pfalstad/_

and parameter name completion:

% echo $SORGTARB

% echo SORGANIZATION _
% echo ${ORGTAB

% echo %{ORGANIZATION _

Note that in the last example a space is added after the completion as usual. But if you want to
add a colon or closing brace, you probably don’t want this extra space. Setting the

.23 .

AUTOPARAMEREYS option will automatically remove this space if you type a colon or closing
brace after such a completion. '

There is also option completion:

% setopt noclTARB
% setopt noclobber _

and binding completion:

% bindkey ‘"X"X' pulAB
% bindkey '“X"X’ push-line

The compctl command is used to control completion of the arguments of specific commands. For
example, to specify that certain commands take other commands as arguments, you use compctl
-c:

% compctl -c man nohup

% man uptTAB
% man uptime _

To specify that a command should complete filenames, you should use compctl -£. This is the
default. It can be combined with ~c, as well.

% compctl -cf echo
% echo uptTAB
% echo uptime _

% echo foTAB
% echo foo.cC

Similarly, use -o to specify options, -v to specify variables, and -b to specify bindings.

% compctl -o setopt unsetopt
% compctl -v typeset vared unset export
% compctl -b bindkey

You can also use -k to specify a custom list of keywords to use in completion. After the -k comes
either the name of an array or a literal array to take completions from.

% ftphosts={ftp.uu.net wuarchive.wustl.edu)
% compctl -k ftphosts ftp

% frp wuTAB

% ftp wuarchive.wustl.edu _

% compctl -k ‘(cpirazzi subbarac sukthnkr)’ mail finger
% finger cpTAB
% finger cpirazzi _

To better specify the files to complete for a command, use the -g option which takes any glob pat-
tern as an argument. Be sure to quote the glob patterns as otherwise they will be expanded
when the competl command is run.

% 1ls
letter.tex letter.dvi letter.aux Iletter.log Iletter.toc
% compctl -g **.tex’ latex

% compctl ~g ‘*.dvi' xdvi dvips
% latex 1TAB

% latex letter.tex _

% xdvi 1TAB

% xdvi letter.dvi

Glob patterns can include gualifiers within parentheses. To rmdir only directories and cd fo direc-
tories and symbolic links peinting to them:

% competl -g “*{(-/)' cd
% competl -g "* (/) rmdir

RCS users like to run commands on files which are not in the current directory, but in the RCS
subdirectory where they all get , v suffixes. They might like to use

- 94 .

% compctl -y 'RCS/*{:t:s/\,v//)' co rlog rcs
% 1ls RCS

builtin.c,v lex.c,v zle main.c, v

% rlog buTAB

% rlog builtin.c _

The :t modifier keeps only the last part of the pathname and the :s/\,v// will replace any ,v
by nothing.

The -s flag is similar to -g, but it uses all expansions, instead of just globbing, like brace expan-
sion, parameter substitution and command substitution.

% compctl -s ‘S (setopt)’ unsetopt

will only complete options which are actually set to be arguments to unsetopt.

Sometimes a command takes another command as its argument. You can tell zsh to complete
commands as the first argument to such a command and then use the completion method of the
second command. The -1 flag with a null-string argument is used for this.

% compctl -1 ‘' nohup exec
% nohup compTARB

% nohup compress _

% nohup compress filTAB

% nohup compress filename _

Sometimes you would like to run really complicated commands to find out what the possible com-
pletions are. To do this, you can specify a shell function to be called that will assign the possible
completions to a variable called reply. Note that this variable must be an array. Here’s another
(much slower) way to get the completions for co and friends:

% function getrcs {

> reply=(}

> for 1 in RCS/*

> do

> reply=($reply[*l $(basename $i ,v))
> done

>}

% compctl -K getres co riog ros

Some command arguments use a prefix that is not a part of the things to complete. The kill
builtin command takes a signal name after a ~. To make such a prefix be ignored in the comple-
tion process, you can use the -p flag.

% compctl -P - -k signals kill
% kill -HTARB
% kill -HUP _

TeX is usually run on files ending in .tex, but also sometimes on other files. It is somewhat
annoying to specify that the arguments of TeX should end in .tex and then not be able to com-
plete these other files. Therefore you can specify things like “Complete to files ending in .tex if
available, otherwise complete to any filename.”. This is done with xored completion:

% compctl -~g ‘*.tex’ + -f taex

The + tells the editor to only take the next thing into account if the current one doesn’t generate
any matches. If you have not changed the default completion, the above example is in fact equiv-
alent to

% compctl -g ‘'*.tex’ + tex

as a lone + at the end is equivalent to specifying the default completion after the +. This form of
completion is also frequently used if you want to run some command only on a certain type of
files, but not necessarily in the current directory. In this case you will want to complete both files
of this type and directories. Depending on your preferences you can use either of

% compctl -y "*.ps’ + -g ‘*(-/)’ ghostview
% compctl -g ‘*.ps *(-/)' ghostview

.95 .

where the first one will only complete directories (and symbolic links pointing to directories) if no
postseript file matches the already typed part of the argument.

Extended completion

If you play with completion, you will soon notice that you would like to specify what to complete,
depending on what flags you give to the command and where you are on the command line. For
example, a command could take any filename argument after a -£ flag, a username after a -u
flag and an executable after a -x flag. This section will introduce you te the ways to specify these
things. To many people it seems rather difficult at first, but taking the trouble to understand it
can save you lots of typing in the end. Even I keep being surprised when zsh manages to com-
plete a small or even empty prefix to the right file in a large directory.

To tell zsh about these kinds of completion, you use “extended completion” by specifying the -x
flag to compctl. The ~x flag takes a list of patterns/flags pairs. The patterns specify when to
complete and the flags specify what. The flags are simply those mentioned above, like -f or -g
glob pattern.

As an example, the xisiringl, string2] pattern matches if the cursor is after gomething that
starts with sfringl and before something that starts with string2. The string2 is often something
that you do not want to mateh anything at all.

% 1s
fool barl foo.Z bar.Z2
% compctl ~-g *"*.2° -x 'ri-d,---]’ ~-g **.Z2' -~ compress
% compress fTAR
% compress fool _
- % compress -d fTAB
% compress -d foo.Z _

In the above example, if the cursor is after the -4 the pattern will match and therefore zsh uses
the -g *.Z flag that will only complete files ending in .Z. Otherwise, if no pattern matches, it
will use the flags before the -x and in this case complete every file that does not end in . z.

The s [string] pattern matches if the current word starts with siring. The string itself is not con-
sidered to be part of the completion.

% compctl -x ‘s[-]’ -k signals -- kill
% kill -HTAB
% kill -HUP

The tar command takes a tar file as an argument after the -£ option. The c ['oﬁ”set,string]. pat-
tern matches if the word in position offset relative to the current word is string. More in particu-
lar, if offset is -1, it matches if the previous word is string. This suggests

% competl -f -x ‘c[-1,-£f}° -g ‘*.tar’ -- tar

But this is not enough. The -f option could be the last of a longer string of options. C[...,...} is
just like c[...,...]1, except that it uses glob-like pattern matching for string. So

% compctl -f -x 'C[-1,-*f}l’ -g ’'*.tar’ -~ tar

will complete tar files after any option string ending in an £. But we'd like even more. Old ver-
sions of tar used all options as the first argument, but without the minus sign. This might be
inconsistent with option usage in all other commands, but it is still supported by newer versions
of tar. So we would also like to complete tar files if the first argument ends in an £ and we're
right behind it.

We can ‘and’ patterns by putting them next to each other with a space between them. We can ‘or’
these sets by putting comma’s between them. We will also need some new patterns. p{num] will
match if the current argument (the one to be completed) is the nwmth argument.
W [index, pattern) will match if the argument in place index matches the paitern. This gives us

% compctl -f -x 'C[~%,-*f) , W[l,*£] pi2]’ ~-g ‘*.tar’ -- tar

In words: If the previous argument is an option string that ends in an £, or the first argument
ended in an f and it is now the second argument, then complete only filenames ending in . tar.

- 26 -

All the above examples used only one set of patterns with one completion flag. You can use sev-
eral of these pattern/flag pairs separated by a -. The first matching pattern will be used. Sup-
pose you have a version of tar that supports compressed files by using a -z option. Leaving the
old tar syntax aside for a moment, we would like to complete files ending in .tar.z if a -2
option has been used and files ending in .tar otherwise, all this only after a -f flag. Again, the
-Z can be alone or it can be part of a longer option string, perhaps the same as that of the -f
flag. Here’s how to do it; note the backslash and the secondary prompt which are not part of the
compctl command.

% competl ~-f -x 'C[-1,-*Z*E£] , R[-*Z*,---] C[~-1,-*F]"' ~-g ‘¥, tar.z2’ -~ \
> 'Ci-1,-*f]' -g '*. tar’ -- tar

The first pattern set tells us to match if either the previous argument was an option string
including a z and ending in an f or there was an option string with a z somewhere and the pre-
vious word was any option string ending in an £. If this is the case, we need a compressed tar
file. Only if this is not the case the second pattern set will be considered. By the way,
R(patternl, pattern2] is just like r{...,..] except that it uses pattern matching with shelil
metacharacters instead of just strings.

You will have noticed the -- before the command name. This ends the list of pattern/flag pairs of
-x. It is usually used just before the command name, but you can also use an extended comple-
tion as one part of a list of xored completions, in which case the -~ appears just before one of the
+ gigns.

Note the difference between using extended completion as part of a list of xored completions as in

% ls

foe bkar

% compctl -x ‘r[-d,-~~1' -g '*.Z2’' -—— + -g '"* %’ compress
% compress -d £TAB

% compress -d foo _

and specifying something before the -x as in

% compctl -g '"*.Z2' -x 'r[-d,---1’ -g '*.Z' -- compress
% compress -d £fTAB
% compress -4 £_

In the first case, the alternative glob pattern ("*.z) will be used if the first part does not gener-
ate any possible completions, while in the second case the alternative glob pattern will only be
used if the r[...] pattern doesn’t match.

Bindings

Each of the editor commands we have seen was actually a function bound by default to a certain
key. The real names of the commands are;

expand-or-complete TAR

push-line ESC-@
run-help ESC-H
accept-and-hold ESC-A
quote~line ESC-

These bindings are arbitrary; you could change them if you want. For example, to bind accept-
line to "Z:

% bindkey '"%Z’' accept-line

Another idea would be to bind the delete key to delete—char; this might be convenient if you
use "H for backspace.

% bindkey ’'"?* delete-char
Or, you could bind "X"H to run-help:
% bindkey ‘'"X"H' run-help

Other examples:

-97 .

% bindkey ‘"X Z' universal-argument
% bindkey ‘' ' magic-space

% bindkey -~z ‘T’ 'uptime

o s

%

bindkey ‘°Q’ push-line-or-edit

universal-argument multiplies the next command by 4. Thus "X°Z°W might delete the last
four words on the line. If you bind space to magic-space, then csh-style history expansion is
done on the line whenever you press the space bar.

Something that often happens is that I am typing a multiline command and discover an error in
one of the previous lines. In this case, push-line-or-edit will put the entire multiline con-
struct into the editor buffer. If there is only a single line, it is equivalent to push-1line.

The -s flag to bindkey specifies that you are binding the key to a string, not a command. Thus
bindkey -s ‘"T’ ‘uptimein’ lets you VMS lovers get the load average whenever you press
°T. '
If you have a NeXT keyboard, the one with the | and \ keys very inconveniently placed, the fol-
lowing bindings may come in handy:

% bindkey -s ‘\e/’ ‘\\‘

% bindkey ~s ‘\e=' ‘|’
Now you can type ALT-/ to get a backslash, and ALT= to get a vertical bar. This only works
ingide zsh, of course; bindkey has no effect on the key mappings inside talk or mail, ete.
Some people like to bind ~s and ~Q to editor commands. Just binding these has no effect, as the
terminal will catch them and use them for flow control. You could unset them as stop and start
characters, but most people like to use these for external commands. The solution is to set the

NOFLOWCONTROL option. This will allow you to bind the start and stop characters to editor
commands, while retaining their normal use for external commands.

Parameter Substitution

In zsh, parameters are set like this:

% foo=bar
% echo $foo
bar

Spaces before or after the = are frowned upon:

% foo = bar
zsh: command nct found: foo

Also, set doesn’t work for setting parameters:

% set foo=bar
% set foo = bar
% echo $foo

%

Note that no error message was printed. This is because both of these commands were perfectly
valid; the set builtin assigns its arguments to the positional parameters (31, $2, ete.).

% set foo=bar

% echo S$1
foo=bar

% set foo = bar
% echo $3 %2
bar =

If you're really intent on using the csh syntax, define a function like this:

-98.

set () {

aval "$1ls8283"
b
set foo = bar
set fuu=brrx
echo $foo S$fun
bar brrr

P g0 gt VOV e

But then, of course you cant use the form of set with options, like set -F (which turns off file-
name generation). Also, the set command by itself won’t list all the parameters like it should.
To get around that you need a case statement:

% set {) {

> case $1 in

> -*|+*{) builtin set $* ;;
> *) eval "3182383* ;;

> esac

>}

For the most part, this should make csh users happy.
The following sh-style operators are supported in zsh:

% unset pull

% echo ${foo-xxx)
bar

% echo ${null-xxx}
XXX

% unset null

% echo 5{null=xx)
KA

% echo $null

XX

% echo ${foo=xxx)
bar

% echo $foo

bar

% unset null

% echo ${null+set}

% echo ${foo+set}
sat

Also, esh-style : modifiers may be appended to a parameter substitution.

% echo $PWD
/home/learning/pf/zsh/zsh2.00/sxc
% echo S$PWD:h
/home/learning/pf/zsh/zsh2.00
% echo $PWD:h:h
/home/learning/pf/zsh

% echo $PWD:t

sre

% name=foo.c

% echo S$Sname

foo.c

% echo Sname:r

foo

% echo Sname:e

C

The equivalent constructs in ksh (which are also supported in zsh) are a bit more general and
easier to remember. When the shell expands ${foo#pat}, it checks to see if pat matches a sub-
string at the beginning of the value of foo. If so, it removes that portion of foo, using the short-
est possible match. With $(foo##pat}, the longest possible match is removed. ${foo%pat} and
$ (foo%%pat} remove the match from the end. Here are the ksh equivalents of the : modifiers:

.99 .

% echo ${PWD%/*}
/home/learning/pf/zsh/zsh2, 00
% echo ${PWD%/*/*}
Jhome/learning/pf/zsh

% echo ${PWDH#*/)}

sroc
% echo ${name%.*}
- foo
% echo ${name#*.}
c

zsh also has upper/lowercase modifiers:

% xx=Test

% echo $xx:u
TRST

% echo $xx:1
test

and a substitution modifier:

% echo Sname:s/foo/bar/

bar.c

% ls

foo.c foo.h foo.0 foo.pro

% for i in foo.*; mv $i $i:s/foo/bar/
% ls

bar.c bar.h bar.o bar.pro

There is yet another syntax to modify substituted parameters. You can add certain modifiers in
parentheses after the opening brace like:

8

& { (modifiers) parameter}
For example, o sorts the words resulting from the expansion:

% echo &{path}

/usr/bin /usr/bin/Xil /etc
% echo ${(o)path}

/ete /usr/bin /usr/bin/X11

One possible source of confusion is the fact that in zsh, the result of parameter substitution is noz
split inte words. Thus, this will not work:

% srcs='glob.c exec.c init.c’
% 1s Ssres
glob.c exec.c init.c not found

This is considered a feature, not a bug. If splitting were done by default, as it is in most other
shells, functions like this would net work properly:

$ 11 () { 1s -F &% }
$ 11 "fuu bar’
fuu not found
bar not found

% 11 ‘fuu bar”’
fuu bar not found
Of course, a hackish workaround is available in sh (and zsh):

% setopt shwordsplit
% 11 () { 1ls -F "$@" }
% 11 "fuu bar-

fuu bar neot found

If you like the sh behaviour, zsh can accomodate you:

-30-

% 1ls s {=srcs}

exec.c glob.c init.c
% setopt shwordsplit

% ls $srcs

exec.c glob.c¢ init.c

Another way to get the $srcs trick to work is to use an array:

% unset srcs

% srcs=(glob.c exec.c init.c)
% 1ls $srcs

exec.c glob.c¢ init.c

or an alias:

% alias ~g SRCS='exec.c glob.c init.c!
% 1ls SRCS
exec.c glob.c init.c

Another option that modifies parameter expansion is RCEXPANDPARAM:

% echo foo/$sros

foo/glob.c exec.c init.c

% setopt rcexpandparam

% echo foo/$sres

foo/glob.c foo/exec.c foo/init.c
% echo foo/${ srecs}

foo/glob.c foo/fexec.c foo/init.c
% echo foo/$ srcs

foo/glob.c foo/exec.c foo/init.e

Shell Parameters
The shell has many predefined parameters that may be accessed. Here are some examples:

% sieep 10 &

{11 382¢

% echo §! '
3820

% set a b c

% echo $#

3

% echo $ARGC

3

% (exit 20) ; echo &7
20

% false; echo $status

1

($7 and $status are equivalent.)

% echo SHOST $HOSTTYPE
dendrite sund

% echo $UID $GID

7GL 60

% cd /tmp

% cd /home

% echo $PWD SOLDPWD
/home /tmp

3 ls SOLDPWD/.getwd
ftmp/ .getwd

“+ and ~- are short for $PWD and $OLDPWD, respectively.

-31 -

% 1ls "-/.getwd
/tmp/ . getwd

% ls -d ~+/learning
/home/ learning

% echo S$SRANDOM
4880

% echo $RANDOM
11785

% echo $RANDOM
2062

% echo &7TTY
/dev/tctypd

% echo SVERSION
zsh v2.00.03

% echo SUSERNAME
pt

The cdpath variable sets the search path for the cd command. If you do not specify . some-
where in the path, it is assumed fo be the first component.

% cdpath={(/usrxr - “/zsh }

% ls /usr

S5kin dict lang net sccs sys
Sinclude etc lector nserve services tmp
51ib export lib ced share uch
adm games local cld skel uchinclude
bin geac lost+found ocpenwin spool ucblib
boct hosts macsyma_417 pat sre xpgabin
demo include marn princeton stand xpg2include
diag kvm mdec pub swap Xpg2lib
% cd spool

/usr/spool

% cd bin

Jusr/bin

% cd func

~/func

% cd

% cd pub

% pwd

/u/pfalistad/pub

% 1s -d /usr/pub

/uszr/pub

PATH and path both set the search path for commands. These two variables are equivalent,
except that one is a string and one is an array. If the user modifies PATH, the shell ehanges
path as well, and vice versa. :

% PATH=/bin:/usr/bin:/tmp:.

% echo $path

/bin /usr/bin /tmp .

% path=(/usr/bin . /usr/local/bin /usr/ucb }
% echo SPATH
Jusr/bin: . :/usr/iccal/bin: /usr/uch

The same is true of CDPATH and edpath:

% echo SCDPATH

/usr:/u/pfalstad: /u/pfalstad/zsh

% CDPATH=/u/subbaraoc:/usr/src:/tmp
% echo Scdpath

/u/subbarao /usr/src /tmp

In general, predefined parameters with names in all lowercase are arrays; assignments to them
take the form:

-89

name=(elem ..\0)

Predefined parameters with names in all uppercase are strings. If there is both an array and a
string version of the same parameter, the string version is a colon-separated list, like PATH.

HISTFILE is the name of the history file, where the history is saved when a shell exits.

% zsh
phoenix% HISTFILE=/tmp/history
phoenix% SAVEHIST=20
rhoenix% echo foo
foo _
phoenix% date
Fri May 24 05:39:35 EDT 1991
phoenix® uptime

5:39%am up 4 days, 20:02, 40 users, 1oad average: 2.30, 2.20, 2.00
phoenix% exit
% cat /tmp/history
HISTFILE=/tmp/history
SAVEHIST=20
echo foo
date
uptime
exit
% HISTSIZE=3
% history

28 rm /twmp/history

29 HISTSIZE=3

30 history

If you have several incantations of zsh running at the same time, like when using the X window
system, it might be preferable to append the history of each shell to a file when a shell exits
instead of overwriting the old contents of the file. You can get this behaviour by setting the
APPENDHISTORY option.

In zsh, if you zay
% >file

the command cat is normally assumed:

3 »file
foo!

D

% cat file
foo!

Thus, you can view a file simply by typing:

% <file
foo!

However, this is not esh or sh compatible. To correct this, change the value of the parameter
NULLCMD, which is cat by default.

% NULLCMD=:

% »file

% 1z -1 file

~rw-r-~r-- 1 pfalstad 0 May 24 05:41 file

If NULLCMD is unset, the shell reports an error if no command is speciﬁéd (like ecsh).

% unset NULLCMD
% >file
zsh: redirecticen with no command

Actually, READNULLCMD is used whenever you have a null command reading input from a sin-
gle file. Thus, you can set READNULLCMD to more or less rather than cat. Also, if you set
NULLCMD to : for sh compatibility, you can still read files with < file if you leave

.83 .

READNULLCMD set to more.

Prompting
The default prompt for zsh is:

phoenix% echo S$PROMPT
Sm%

The %m stands for the short form of the current hostname, and the %# stands for a % or a #,
depending on whether the shell is running as root or not. zsh supports many other control
sequences in the PROMPT variable.

% PROMPT='%/> '
/u/pfalstad/ete/TeX/zsh>

% PROMPT='%"> '
~/etc/TeX/zsh>

% PROMPT='%h %™> '
6 “/etc/TeX/zsh>

%h represents the number of current history event.
% PROMPT='%h %~ %M> '

10 “/etc/TeX/zsh apple-gunkies.gnu.ai.mit.edu>

% PROMPT='%h %~ %Sm> '
11 ~“/etc/TeX/zsh apple-gunkies>

% PROMPT='%h %t> '
12 6:1iam>

% PROMPT='%n %w tty%l>’
pfalstad Fri 24 ttypl>

PROMPT2 iz used in multiline commands, like for-loops. The %_ escape sequence was made
especially for this prompt. It is replaced by the kind of command that is being entered.

% PROMPTZ2='%_> '
% for i in foo bar
for>

% echo 'hi
quote>

Also available is the RPROMPT parameter. If this is set, the shell puts a prompt on the right
gide of the screen.

% RPROMPT='%t’
% 6:14am

% RPROMPT='%""'

% “/fetc/TeX/zsh
% PROMPT='%1 %T $m{%h] ' RPROMPT=' %"°
p0 6:15 phoenix([5] “/etc/TeX/zsh

These special escape sequences can also be used with the -P option to print:

% print -P %h tty%l
15 ttypl

The POSTEDIT parameter is printed whenever the editor exits. This can be useful for termcap
tricks. To highlight the prompt and command line while leaving command cutput unhighlighted,
try this:

-34-

% POSTEDRIT='echotc se®
% PROMPT='%5%%

Login/logout watching

You can specify login or logout events to monitor by setting the watch variable. Normally, this is
done by specifying a list of usernames.

% watch={ pfalstad subbarao sukthnkr egsirer }
The log command reports all people logged in that you are watching for.

% log

pfalstad has legged on p0 from mickey.
pfalistad has logged on p5 from mickey.
5 ..

subbarao has logged on p8 from phoenix.
% ..

subbarao has logged off p8 from phoenix.
% ...

sukthnkr has logged on p8 from dew.

% ...

sukthnkr has logged off p8 from dew.

If you specify hostnames with an @ prepended, the shell will watch for all users logging in from
the specified host.

% watch={ Gmickey @phoenix }

% log

dithongs has logged on g2 from phoenix.
pfalstad has logged on p0 from mickey.
pfalstad has logged on p5 from mickey.

If you give a tty name with a % prepended, the shell will watch for all users logging in on that
tty.

% watch={ %ttyp0 %console)

% log -

root has logged on console from .
pfalstad has logged on p0 from mickey.

The format of the reports may also be changed.

-35.

% wateh=(pfalstad gettes eps djthongs jcorr hdavis }
% log

jeorr has logged on tf from 128,112,176.3:0,
jocoxrr has logged on x0 from 128,112,176.3:0.
gettes has logged on péd from yo:0.0.
dithongs has leogged on pe from grumpy:0.0.
dithongs has logged on g2 from phoenix.
bdavis has logged on gd from BRUNO.

eps has logged on p3 from csx30:0.0.
pfalstad has logged on p0 from mickey.
pfalstad has logged on p5 from mickey.
% WATCHFMT='%n on tty%l from %M’

% log

jeorr on tiytf from 128.112.176.3:0.
jcorr on ttyr(0 from 128.112.176.3:0.
gettes on ttyp4 from yo:0.0

djthongs on ttype from grumpy:0.0
dijthongs on ttyg2 from phoenix.Princeto
bdavis on ttygd from BRUNO.pppl.gov

eps on ttyp3 from csx30:0.0

pfalstad on ttypl from mickey.Princeton
pfalstad on ttyp5 from mickey.Princeton
% WATCHFMT='%n fm %m’

% log

jecorr fm 128.1312.176.3:0

jeorr fm 12B8.112.176.3:0

gettes fm yo:0.0

djthongs fm grumpy:0.0

dijthongs fm phoenix

bdavis fm BRUNO

eps fm csx30:0.0

pfalstad fm mickey

pfalstad fm mickey

% WATCHFMT='%n %a at %t %w.’

% log

jeorr logged on at 3:15pm Mon 20.

jeorr logged on at 3:1l6pm Wed 22.
gettes logged on at 6:54pm Wed 22.
dithongs logged on at 7:19am Thu 23.
djthongs logged on at 7:20am Thu 23.
bdavis logged on at 12:40pm Thu 23.

eps logged on at 4:1%9pm Thu 23.
pfalstad logged on at 3:3%am Fri 24.
pfalstad logged on at 3:42am Fri 24.

If you have a . friends file in your home directory, a convenient way to make zsh watch for all
your friends is to do this:

% watch=($(< "/.friends))
% echo Swatch
subbarao maruchck root sukthnkr ..

If watch is set to all, then all users logging in or out will be reported.

Options ‘
Some options have already been mentioned; here are a few more:

Using the AUTOCD option, you can simply type the name of a directory, and it will become the
current directory.

-36-

% cd /

% setopt autocd
% bin

% pwd

/bin

% ../etc

$ pwd

/ete

With CDABLEVARS, if the argument to cd is the name of a parameter whose value is a valid
directory, it will become the current directory.

% setopt cdablevars

% foo=/tmp
% cd foo
/ tmp

CORRECT turns on spelling correction for commands, and the CORRECTALL option turns on
spelling correction for all arguments. :

% setopt correct

% sl

zsh: correct ‘si’ to ‘ls* [nyae]? v

% setopt correctall

% 1s x.vllrd

zsh: correct 'm.vllrd® te ‘X.VL1IR4' [nyael? n
/usr/princton/src/x.vilrd not found

% ls /etc/paswd

zsh: correct to ‘/etc/paswd’' to ‘/etc/passwd’ [nyae]? vy
/etc/passwd

If you press v when the shell asks you if you want to correct a word, it will be corrected. If you
press n, it will be left alone. Pressing a aborts the command, and pressing e brings the line up
for editing again, in case you agree the word is spelled wrong but you don’t like the correction.

Normally, a quoted expression may contain a newline:

% echo
> foo
-

foo

%
With CSHJUNKIEQUOTES set, this is illegal, as it is in csh.

% setopt cshjunkiequotes
% 1ls "foo
zsh: unmatched -

GLOBDOTS lets files beginning with a . be matched without explicitly specifying the dot.
% 1ls -d *x*
Maillboxes
% setopt globdots
% ls -4 *x*
.exXre Pnewsexpert . xserverrc
.mushexpert JXinitre Mailboxes

HISTIGNOREDUPS prevents the current line from being saved in the history if it is the same as
the previous one; HISTIGNORESPACE prevents the current line from heing saved if it begins
with a space.

-97-

% PROMPT='%h> ‘

39> setopt histignoredups
404> echo foo

foo

41> echo foo

foo

41> echo foo

foo

41> echo bar

bar

42> setopt histignorespace
43> echo foo

foo

43> echo fubar

fubar

43> echo fubarx

fubar

IGNOREBRACES turns off csh-style brace expansion,

% echo x{y{z,a}, {(b,c)dle
xyze xyae xbde xcde

% setopt ignorebraces

% echo x{y{z,a},{b,cidle
x{v{z,a},{b,cld}e

IGNOREEOF forces the user to type exit or Logout, instead of just pressing “D.

% setopt ignoreeocf
% "D
zsh: use ‘exit’ to exit.

INTERACTIVECOMMENTS turns on interactive comments; comments begin with a #.

% setopt interactivecomments
% date # this is a comment
Fri May 24 06:54:14 EDT 19%1

NOBEEP makes sure the shell never beeps.
NOCLOBBER prevents you from accidentally overwriting an existing file.

% setopt noclobber
% cat /dev/null >"/.zshrc
zsh: file exists: /u/pfalstad/.zshre

If you really do want to clobber a file, you can use the > operator. To make things easier in this
case, the > is stored in the history list as a >!:

% cat /dev/null >! ~/.zshrc

% cat /etc/motd » 7/.zshrc

zsh: file exists: /u/pfalstad/.zshrc
% 1

cak fete/motd >i 7/.zshrc

% ..

RCQUOTES lets you use a more elegant method for including single quotes in a singly quoted
string:

% echo ""don’'\'‘t do that.*’
"don‘t do that."

% echo ""den’’t do that."’
"dont do that.”

% setopt requotes

% echo ‘"don’’t de that."’
“don’'t do that."

Finally, SUNKEYBOARDHACK wins the award for the strangest option. If a line ends with *,
and there are an odd number of them on the line, the shell will ignore the trailing *. This is

- 38 -

provided for keyboards whose RETURN key is too small, and too close to the * key.

% setopt sunkevboardhack
% date’
Fri May 24 06:55:38 EDT 1991

Closing Comments

I (Bas de Bakker) would be happy to receive mail if anyone has any tricks or ideas to add to this
document, or if there are some points that could be made clearer or covered more thoroughly.
Please notify me of any errors in this document.

Table of Contents

J N o Ts Lo L1 Lo o HORO U OO O S S SO P PR 1
Filename GEIETATION.iiviverereee ettt rts it e b e sbtrs s s ib e satme e e sae s s e b b bs s s Rb e s ebbadassansse s sabaessibraeses 1
SEATEUD FUIBE oottt s e s et e s naa e s bae e s 4
Shell FUNCEIONS 1ovviiierrreeieeeieatieeeeecisseeseaarrseetsasnrraeeraerareresiassnaessaaasrrnasseseraesesesissasnaesssasssnnssseseencntonnes 5
D=1 15 o 0 O 8
Directory STACKS ..oiiveeir et bt e e e cn e e e e 9
Command/Process Substitubion ..ot ey e e 11
REITOOLION oottt e e s er s et e s e b b e s e mb b s s rns s e e e s aam e e e b e e s s sk bt e e e rr bt e et r s e nr e e s saeeannrree s 13
ATTABIIIE oottt esrr e s s s rae et e ebeeesbs e st e n e e ea e s an e se e et aene s e R e e e e erneaes [T TOPRTTTRTON 14
|5 BT e o U U OO OO TSP P ORI 16
Command Line Editing e tteertereeere e e s e er e R et et st r R T e e R R seee et s e n e st e e e e she e st it e en e beenanes 18
06T) 03 L= Lo s A S OO U U OO TSROSO VPR DS 21
| EXtended COMPIETION v veceeceeeeeeeeiesese s es e sssies et sess et s st s st s et ssns et et st en e ee st ene s seeree e 25
BiITITIES .eoiiis it e R R LR LR s b e s S db et et e e e r s eennes 26
Parameter Substifulon ... e e e 27
Shell Paramebirs .o ciiieieiitirrrtriisr s s errssssssssssesrasesersteneesbr s s eabr b be bbbt s ar e s e saaebnbannnnnnnrrenres 30 -
Prompting e e eree et e e e s s et R e e ettt e eenee st e 33
Login/logout WatChilif ..ot s e s st e e e n e et 34
ODLIOME 1oitiiieeeieerntireerse oo et a b e ss bt e et b tabote s bbb et e b bd e b b o 48 eo 48 e Eb 40404148 e b e e b4 e o4t e b L4 e b4 et e et e eraranreeane st rertas 35

Closing Commentscovvviiii e s e 38

