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Abstract – The ensemble Kalman filter is a widely
used technique across the many radio science domain
areas. Despite this, conventional descriptions of Kalman
filters can, at times, be somewhat opaque and difficult to
conceptualize, making them difficult to approach for
many users. This article presents a visualization of the
underlying mathematical equations to provide a more
intuitive understanding of the steps of the filter.

1. Introduction

The Kalman filter [1] is a powerful tool used to
combine noisy measurements to obtain a better
estimation of a system. Since its introduction in 1960,
the filter has become of increasing importance across
science and engineering. Part of its appeal is its broad
applicability, from missile tracking [2] to economics
[3], many disciplines have applied Kalman’s technique.
Although the Kalman filter is very popular and used in a
variety of applications, it can seem obscure to many
people because of the mathematics.

Simplistically, the Kalman filter is a two-step
process. First, an estimate of the current system (for
example, in missile tracking this would be position and
speed) and uncertainties are required. The filter then
updates these estimates with measurements (which also
have some level of uncertainty) by using a weighted
average (more uncertainty means less weight). The
updated estimate of the system is then propagated
forward to the next time step by using a model of the
underlying system.

One of the limitations of the Kalman filter is its
computational expense for large systems. To address
this problem, [4] developed the ensemble Kalman filter
(EnKF). Essentially, the EnKF just replaces the term
in the Kalman filter that tells us how the variables in
our system are related to each other (which is called a
covariance matrix), with an approximation (sample
covariance matrix). This approximation greatly reduc-
es the computational cost of the process that has
allowed it to be applied to many more problems. The
use of the EnKF is rapidly growing, and while it is
simple enough to write down the mathematics, the
equations alone do not provide much insight into this
technique.

2. Visualization

Imagine a simple system with two variables

ðx ¼ v1

v2

� �
Þ. For example, this could be a position

(latitude and longitude) or the properties of a medium
(temperature and pressure of a gas). Also, imagine we
have a model that provides an estimate of these at a
given time. Slightly tweaking how the model is run
gives us slightly different estimates of the system. Such
a model describes a space of possible outputs, called a
probability distribution function.

The naive best guess of the true values of our
system would be to run the model many times, using
realistic inputs, and then take the average of the outputs.
However, if we then obtain a measurement (observa-
tion) of the system, with a known measurement error,
the EnKF can be used to provide an updated estimate of
the system by using both the current model estimate and
the observation.

The different estimates of the system (by repeat-
edly running the model; Figure 1a) are used to estimate
the space that the model covers (estimating a probability
distribution). We do this by seeing how far each of the
model outputs are away from the average (Figure 1b).

Mathematically, we can describe this by

X ¼ ½x1; x2; . . . ; xn� ð1Þ
where each xi represents one run of the model (an
ensemble member). Xb is then defined as the matrix that
represents how far each member is from the average (�x).
We call this the perturbation matrix:

Xb ¼ ½x1 � �x; x2 � �x; . . . ; xn � �x�: ð2Þ
The covariance matrix (how the systems variables are
related) can then be estimated by

B ¼ 1

n� 1
XbðXbÞT : ð3Þ

As the number of ensemble members (model runs)
increases the estimated covariance matrix approaches
the true covariance matrix.

We now want to update this estimate with an
observation of the system. Because our observation (yo)
is not completely reliable, the measurements also have
an associated uncertainty (R; the error is assumed to be
Gaussian). This observation and associated error

Figure 1. The individual estimates of the state are in red and are used
to estimate the underlying probability distribution of our current
estimate (shaded region).
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describe a space of possible values (probability
distribution; see Figure 2a, the nonperpendicular axes
are to distinguish between the model variables and
observation variables). We sample this distribution
(Figure 2b) as many times as we have ensemble
members. This can be accomplished by adding
(Gaussian) noise to the observation to form the matrix Y

Y ¼ ½yo þ e1; yo þ e2; . . . ; yo þ en� ð4Þ
where each (ei) is drawn from the Gaussian distribution
described by the observation uncertainties (R).

We do not need an observation of every variable
in the system (because we are estimating in the EnKF
the relationship between them) or even for the
observation to be of exactly the same variables as our
system. However, we do need a way of mapping
between the variables in our model to the observation
variables. This mapping function (called an observation

operator, denoted by H), transforms our estimate into
observation space (Figure 3; the mapping from model
space to observation space is highlighted by the
changing axes). This gives us the ensemble members
(HX) and model covariances (BHT) in observation
space.

We now look at the differences between the model
values and observations. This is done by simply
subtracting ensemble members from the observations
(in observation space; Figure 4a), resulting in a set of
differences (Figure 4b). These differences, D, are given
by

D ¼ Y� HX ð5Þ

We want to update our current estimate with these
differences. Exactly how we update the estimate (as
well as the uncertainties) depends on the relative errors

between the estimate and observation (the relative
lengths of the red and blue arrows, shown in Figure 4a).

The differences (shown in green, Figure 4b) are
added to the members (red) by using a weighting
function. The weighting used (denoted by K, called the
Kalman gain) is based on how much the current
estimate uncertainty contributes to the total uncertainty
(the current plus measurement uncertainty). In a simple
scalar case, for two values of uncertainty a and b, the
contribution of a to the total uncertainty would be

a
aþ b

¼ aðaþ bÞ�1: ð6Þ

With the model errors given by B (3) and the
observation errors given by R, the Kalman gain is
calculated (in observation space) as

K ¼ BHT ðHBHT þ RÞ�1 ð7Þ
which is the same as (6) but with the necessary
observation operator H and a matrix transpose.

Each individual ensemble member is then updated
(and the model uncertainty) by combining the differ-
ences D and our original estimate X with the calculated
weighting K (Figure 5). The weighted sum of the
ensemble members and differences is given by

Xa ¼ XþKD ð8Þ
where Xa is our updated estimate.

Taking the average values of the updated
members now provides a better estimate of our system
than what we started with. After the update process, the
uncertainty of the estimate is usually reduced. The final
part of the EnKF is to move each individual ensemble
member forward in time (Figure 6). To do this, we use a
model propagator (Mt,tþ1) that moves the estimate at
time t to a new position at time t þ 1.

Figure 2. The underlying distribution of the observation is shaded
blue. The blue circles are our (random) samples of this distribution.
The nonperpendicular axes are used to highlight the difference
between the model and observations.

Figure 3. H maps the model values (red) into the same space as the
observation values (blue).

Figure 4. The green circles (D) are found by subtracting the red from
the blue. The red and blue arrows in (a), which represent the
uncertainty, are used to calculate the weighting to be used in updating
the estimate.

Figure 5. The pink circles are the weighted sum of the red and green.
The pink shaded area represents the updated model error.
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X ¼ Mt;tþ1Xa ð9Þ
The estimate at the next time step is then ready for
further measurements to be added. The process repeats
exactly as previously mentioned.

Putting all of this together, we have the EnKF
equations (where t is time and n the number of
ensemble members)

Xb
t ¼ Xt � �x ð10Þ

Bt ¼
1

n� 1
XbðXb

t Þ
T ð11Þ

Kt ¼ BtH
T
t ðHtBtH

T
t þ RtÞ�1 ð12Þ

Xa
t ¼ Xt þKtðYt � HtXtÞ ð13Þ

Xb
tþ1 ¼ Mt;tþ1Xa

t ð14Þ
where Xb

t represents the average value removed from
each column of Xt (10). This process can be visualized

(by combining all the figures together, Figure 8) as
mapping the model values (red) into observation space
and subtracting the observations (blue) to obtain a set of
differences (green). The uncertainties in the model and
observations (estimated by the spread of points) are
used to create a weighted sum between the model points
and differences, resulting in updated model points
(pink). Finally, these points are moved forward to the
next time step, where the EnKF starts again (red).

3. Conclusions

The EnKF is a computationally efficient imple-
mentation of the Kalman filter. Its ease of use and
effectiveness have resulted in its widespread adoption
across all fields of radio science and beyond, as
demonstrated in Figure 8, by the cumulative number
of publications using the algorithms. The aim of this
article has been to demystify the underlying mathemat-
ics of the EnKF through a series of simple visualiza-
tions.
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Figure 6. Our estimate at a given time (in pink) is propagated
forward in time, and the process repeats.

Figure 7. A graphical overview of the EnKF. The model values (red)
are mapped to observation space and the observations (blue) are
subtracted, giving a set of differences (green). A weighted sum
between the model points and differences result in updated model
points (pink) that are then propagated forward in time.

Figure 8. Cumulative number of papers, by year, that reference
Kalman filter and EnKF, according to Google Scholar.
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