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Abstract – Josephson-junction circuits allow
generation, mixing, detection, and parametric amplifi-
cation in classical and quantum signal processing.
General energy relations for Josephson junctions govern
frequency conversion and AC–DC conversion. In this
article, we review physical principles, properties, and
applications of superconducting electronics based on
Josephson parametric amplifiers, and give an overview
of the development over the last 50 years.

1. Introduction

Josephson-effect-based devices allow generation,
detection, mixing, and parametric amplification of high-
frequency signals up into the terahertz region and
exhibit high sensitivity, low energy consumption, and
small size [1–4]. According to the theory of Bardeen,
Cooper, and Schrieffer, superconductivity is a micro-
scopic effect caused by a Bose–Einstein condensation
of electrons into Cooper pairs [5]. The superconducting
ground state can be described by a coherent macro-
scopic matter wave function. The condensation of the
electrons in a quasi-coherent state leads to special high-
frequency properties and low electronic noise. Super-
conducting tunneling currents were observed experi-
mentally by Isolde Dietrich in 1952 [6]. In 1962, B. D.
Josephson presented the theory of superconductive
tunneling through superconductor–insulator–supercon-
ductor junctions based on the microscopic theory of
Bardeen, Cooper, and Schrieffer [8, 9]. The experimen-
tal proof of the Josephson effect, confirming important
predictions made by Josephson, was given by P. W.
Anderson and J. M. Rowell [7].

2. General Energy Relations

A Josephson junction, shown schematically in
Figure 1, is an arrangement of two superconductors S1
and S2 weakly coupled across an insulating tunnel
barrier TB with a thickness of a few nanometers. A
voltage v(t) applied to the Josephson junction deter-
mines the time variation of the quantum phase
difference u of the macroscopic matter waves describ-
ing the superconducting state. Current i(t) and voltage
v(t) are related via

i tð Þ ¼ IJ sin u tð Þ ð1aÞ

v tð Þ ¼ �h

2e0

du tð Þ
dt

ð1bÞ

where �h ¼ h=2p, h is Planck’s constant, e0 is the
magnitude of the electron charge, and IJ is the
maximum Josephson current [2].

Applying a DC voltage V0 yields an AC Josephson
current with frequency f0 ¼ 2e0V0/h ¼ 483.6V0

(MHz/lV) and amplitude IJ. The energy wJ(u) stored
in the Josephson junction, shown also in Figure 2, is

wJ uð Þ ¼ �hIJ

2e0

1� cos u½ �

¼ 1

2p
U0IJ 1� cos 2pU tð Þ=U0ð Þ½ � ð2Þ

where U is a magnetic flux, defined via dU/dt ¼ v, and
the flux quantum U0¼ h/2e0 ’ 2.06783461 3 10�15 Vs.
The maximum energy that can be stored in a Josephson
junction is given by �hIJ=2e0 ¼ U0IJ=2p, and the
maximum power that can be exchanged with a single
Josephson junction at a frequency f is less than fU0IJ/2p
[10]. This yields for IJ ¼ 1 lA and f ¼ 10 GHz a
saturation power below 3 pW.

The Josephson junction acts as a nonlinear
lossless inductor with fundamental inductance LJ ¼
�h=2e0IJ and can be applied for mixing and parametric
amplification in the microwave region. The general
energy relations for the Josephson junction [11, 12] are
similar to the Manley–Rowe equations [13], however,
they exhibit an additional term for the DC power.

In the equivalent circuit [2] depicted in Figure 3,
power exchange with the Josephson junction is only
possible at DC and at the combination frequencies mf1þ
nf2, where m and n are integers. Applying a voltage with
a DC component V0 and AC components with
frequencies f1 and f2 yields a Josephson current with
frequency components f0 þ mf1 þ nf2, where m, n are
integers. For the case f0¼ kf1þ lf2, the following general
energy relations were derived in [12]:

X‘

m¼1

X‘

n¼�‘

mPmn

mf1 þ nf2

¼ � kP0

kf1 þ lf2

ð3aÞ

X‘

n¼�‘

X‘

n¼1

mPmn

mf1 þ nf2

¼ � lP0

kf1 þ lf2

ð3bÞ

where Pmn is the active power flowing into the
Josephson junction at the combination frequency mf1
þ nf2 and P0 is the DC power flowing into the
Josephson junction. If the Josephson junction is
connected only to two resonant circuits with frequen-
cies f1 and f2, and the junction is DC voltage-biased to
generate a Josephson oscillation at f0 ¼ f1 þ f2, we
obtain P1/f1 ¼ P2/f2 ¼�P0/(f1þ f2).

Manuscript received 30 August 2020.

Peter Russer and Johannes A. Russer are with the Department of
Electrical and Computer Engineering of the Technical University
of Munich, Arcisstrasse 21, 80333 Munich, Germany; e-mail:
russer@tum.de, jrusser@tum.de

URSI RADIO SCIENCE LETTERS, VOL. 2, 2020 DOI: 10.46620/20-00601



3. Josephson Parametric Amplifiers

The first experimental realization of an AC-
pumped Josephson parametric amplifier (ACPJPA)
was reported in 1967 by H. Zimmer [14]. This ACPJPA
consisted of a thin-film Josephson junction evaporated
on a rutile resonator and was operated at 9646 MHz in
the double-degenerate mode.

In 1969, P. Russer proposed a DC-pumped
Josephson parametric amplifier (DCPJPA) [11]. Figure
4 shows the equivalent circuit of the DCPJPA
exhibiting a signal circuit consisting of the inductor
L10, the capacitor C10, the conductor G10, and the
impressed signal source I10, as well as an idler circuit
consisting of L01, C01, and G01. Terminating the
Josephson junction at the idler frequency x2 with the
admittance Y01, it exhibits the impedance

ZJ10 ¼ �
x1x2�h2

e2
0I2

J

Y �01 ð4Þ

at the signal frequency x1. Since the negative real part
of ZJ10 is related to the positive real part of Y01, the gain
at x1 is related to losses in the idler circuit. The
magnitudes of the transfer admittances of the Josephson
junction governing the conversion between signal and
idler frequencies are given by Y12j j ¼ e0IJ=�hx2 and
Y21j j ¼ e0IJ=�hx1 and determine the admittance level of

the circuitry [11].
H. Kanter has realized DCPJPAs for signal

frequencies of 30 MHz [15] and 9 GHz [16–18], as
up-converters from 115 MHz to 9 GHz [17, 19], and for
89 GHz [20]. A 15 GHz mixer with niobium point
contact is described in [21]. M. Yu proposed a DCPJPA
where the Josephson oscillation synchronizes with the
input signal [22]. With a DCPJPA, Calander, Claeson,
and Rudner achieved 8 dB gain and 2 pW input

saturation level at 10 GHz [23]. With an ACPJPA
operating at 9 GHz, a power gain of 16 dB in a 4 MHz,
3 dB bandwidth was achieved by J. Mygind et al. [24,
25]. A JPA for 36 GHz with a point-contact Josephson
junction with 11 dB gain was realized by Y. Taur and P.
Richards [26, 27]. Further work on JPAs is presented in
[10, 28–37].

SQUID JPAs use Josephson junctions in a
superconducting quantum interference device arrange-
ment, with one or two Josephson junctions inserted in a
superconducting ring. For a single junction, the
Josephson current is given by (1a) for u ¼ 2pU/U0,
where U denotes the magnetic flux through the ring [32,
38, 39]. Mutus et al. reported a SQUID JPA tunable
between 5 GHz and 7 GHz with quantum-limited noise
performance, and an input saturation power greater than
120 dBm [40]. By proper impedance matching with a
flux-pumped amplifier made of an array of RF-SQUIDs
with 40 Josephson junctions, a high saturation power of
�90 dBm and a bandwidth greater than 1.6 GHz have
been achieved [41]. Planat et al. realized a JPA
consisting of an array of 80 SQUIDs exhibiting a
bandwidth of 45 MHz, tunable between 5.9 GHz and
6.8 GHz, with an input saturation power of �117 dBm
[42].

4. Traveling-Wave Parametric Amplifiers

A Josephson traveling-wave parametric amplifier
(JTWPA) achieves unilateral and higher gain, together
with improved stability and larger bandwidth, than a
discrete JPA with a single Josephson junction [2, 43–
51]. The JTWPA can be realized either by connecting
Josephson junctions in parallel to a transmission line or
by inserting Josephson elements in series between
transmission-line segments.

Figure 2. Current i(U) flowing through the Josephson junction and
energy w(U) stored in the junction.

Figure 3. Frequency-conversion circuitry [2].

Figure 4. Josephson parametric amplifier [11].

Figure 1. Josephson junction.
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Figure 5 shows a JTWPA structure with the
Josephson junction in parallel to the transmission line,
as described in [43, 44]. The JTWPA is based on a
Josephson transmission line formed by two supercon-
ductors of length l connected via a distributed Josephson
junction exhibiting an insulating tunneling layer of
thickness d. A transverse magnetic field By flows through
a layer of thickness dm¼dþ2kL, where kL is the London
penetration depth of the magnetic field, into the
superconductor [52, p. 61]. The magnetic field yields a
spatial variation of the quantum phase difference u [53].

For a uniform transverse magnetic field By0, the
magnetic flux increases in the x-direction proportional
to xdmBy0. Applying a DC voltage V0 and a static
transverse magnetic field By0, we excite a pump wave
with angular frequency x0 ¼ 2e0V0=�h and wave
number k0 ¼ 2e0By0dm=�h. For the applied idler fre-
quencies xi6, both frequency and phase conditions xi6

¼ x06xs and ki6 ¼ k0 6 ks must be fulfilled. Small
signal analysis [2, 43, 44] yields a power gain at xs

given as

Gs xð Þ ¼ 1

2
cosh 2jlð Þ þ 1½ �;

j ¼ 1

4k2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki�kiþ
p ¼ 1

4k2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2

0 � ks
2

q
Þ

ð5Þ

where JJ is the maximum Josephson current density and
ki6 and ks are the wave numbers of the idler and signal
waves, respectively.

The JTWPA with Josephson junctions in parallel to
the transmission line has the advantages that it can be
realized as a continuous structure, it can be DC-pumped,
and the phase velocity of the pump wave can be tuned by
a DC magnetic field. Difficulties for realization arise
from the low impedance of Josephson junctions.

In 1985, M. Sweeny and R. Mahler proposed a
JTWPA consisting of a superconducting transmission line
interrupted in series by a large number of junctions [45].
Similar structures with series-connected Josephson junc-
tions were investigated in [46–48, 50, 51, 54]. Figure 6
shows the circuit of a Josephson traveling-wave para-

metric amplifier consisting of a long chain of capacitively
shunted Josephson junctions along a transmission line.

Naaman, Ferguson, and Epstein presented the
design of a three-wave JTWPA with a bandwidth of 1.6
GHz and a high saturation power of�90 dBm at a gain
of 22.8 dB [41]. With a JTWPA based on a periodic so-
called photonic crystal structure formed by 2160
SQUIDs, Planat et al. achieved 3 GHz bandwidth
around 6 GHz,�100 dBm saturation power with a noise
figure near the quantum limit [55].

5. Circuit Quantum Electrodynamics of
Josephson Parametric Amplifiers

Given small enough signal amplitudes, a treat-
ment on the basis of circuit quantum electrodynamics
(CQED) is required in order to obtain an understanding
and a correct description of the phenomena, taking into
account the quantum statistical properties of the
circuits. CQED allows for an investigation of lumped-
element or distributed linear lossless circuits on the
basis of Hamiltonian description of Foster equivalent
circuits [56–60].

The quantum theory of circuits has already been
addressed by H. A. Haus and Y. Yamamoto [56] and by
B. Yurke [57]. QCED models can be constructed for
electromagnetic structures using analytic or numerical
methods in conjunction with system identification
methods, yielding lumped element models in canonical
form. Figure 7 shows a Josephson junction embedded in
a circuit consisting of two lossless resonant circuits L1,
C1 and L2, C2, and a DC source V0. Introducing
annihilation operators ai and creation operators a

y
i by

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2�hxiLi

r
Ui þ j

ffiffiffiffiffiffiffiffiffi
xiLi

2�h

r
Qi ð6aÞ

a
y
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�hxiLi

r
Ui � j

ffiffiffiffiffiffiffiffiffi
xiLi

2�h

r
Qi ð6bÞ

where the operators Qi and Ui represent charge and flux
in the capacitors Ci and the inductors Li, respectively.
The Hamiltonian H is given by

H ¼ H0 þH1 ð7Þ

H0 ¼
1

2
�hx1ðay1a1 þ a1a

y
1Þ þ

1

2
�hx2ðay2a2 þ a2a

y
2Þ ð8Þ

H1 ¼ WJ 1� cos x0t þ j1 a1 þ a
y
1

� �
þ j2 a2 þ a

y
2

� �h ih i

Figure 5. Josephson transmission line.

Figure 6. JTWPA with series-connected junctions.
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with x0 ¼ 2e0V0

�h ; U0 ¼ p�h
e0
; WJ ¼ U0IJ

2p ; ji ¼
ffiffiffiffiffiffiffi
2aZi

pZF0

q
;

ZF0 ¼
ffiffiffiffi
e0

l0

q
’ 377X; Zi ¼

ffiffiffiffiffiffiffiffiffiffiffi
Li=Ci

p
:

The element a is the fine structure constant
a ¼ e2

0ZF0=4p�h ’ 1=137. The time dependence of the
expectation value of the photon energy has been
calculated in [2, 59] as

W tð Þh i ¼ �hx wj j2cosh2c12t

þ �hx1

2
coth

�hx1

kBT1

cosh2c12t

þ �hx1

2
coth

�hx2

kBT2

sinh2c12t ð9Þ
with

cij ¼
e0IJ

ph

ffiffiffiffiffiffiffiffi
ZiZj

p
¼ aIJ

pe0

ffiffiffiffiffiffiffiffi
ZiZj

p
ZF0

¼ IJ

2pU0

ffiffiffiffiffiffiffiffi
ZiZj

p
ð10Þ

The first term on the right-hand side of (9)
represents the amplified signal, the second term is the
amplified noise of the signal circuit L1, C1, and the third
term is the amplified noise down-converted from the
idler circuit L2, C2 to the signal circuit. A quantum-
mechanical treatment of the JTWPA was given in [61,
62]. Dissipation and fluctuation in DCPJPAs were
investigated in [63–66] on the basis of the quantum
Langevin equations. Roy and Devoret [67] and Sivak et
al. [68, 69] discussed the influence of the Kerr terms
; ay2a2 on the dynamic range of JPAs.

6. Squeezed States and Entangled States

Squeezed states have less uncertainty in one
quadrature than coherent states [70–72]. Squeezed
states of the radiation field are eigenstates of the
operator

b ¼ laþ may; lj j2 � mj j2 ¼ 1 ð11Þ
where a† and a are photon creation and annihilation
operators and and m are complex numbers. Splitting a
into a¼ acþ jaq, representing cophasal and quadrature
components, with ac ¼ ayc and aq ¼ ayq, yields

Da2
c

� �
¼ 1

4
l� mj j2; Da2

q

D E
¼ 1

4
lþ mj j2 ð12Þ

Squeezed states can be generated by degenerate
parametric amplification [73]. Squeezed state genera-
tion using a Josephson parametric amplifier has been
discussed in [74–77]. The achievable degree of
squeezing in a degenerated DCPJPA with identical
signal and idler frequencies f1 ¼ f2 ¼ f0/2 has been
calculated in [76, 77]. Figure 8 shows the schematic
circuit diagram of the DCPJPA. The Josephson junction
is DC-biased by a voltage V0, connected to the resonant
circuit LC, and resistively shunted by RN. The DC bias
V0 is chosen such that the frequency f0 is twice the
resonance frequency of the resonant circuit LC [76], and
(8) can be approximated by

HDCPJPA
1 ¼ j1 ay2e�jx0t þ a2ejx0t

� �
ð13Þ

According to Yuen, this Hamiltonian can produce
squeezed states [70–72]. Squeezed states allow transfer
of entanglement to a pair of quantum bits [78].
Squeezing of photons with JPAs was investigated in
[62, 79, 80].

Josephson junctions allow manipulation of quan-
tum information. The qubit (quantum bit) is the basic
unit of quantum information and is represented by a
two-state quantum system [81]. While a classical bit can
assume only either the states 0 or 1, a qubit can be in a
weighted superposition of states 0j i and 1j i. A two-
qubit state which is not decomposable into two one-bit
states is called entangled. An example of an entangled
state is 1ffiffi

2
p 00j i þ 11j ið Þ.

A photonic NOON state is a many-photon
entangled state representing a superposition of N
particles in a first mode a, with zero particles in a
second mode b, and vice versa [82, 83]; it has the
form

wj iNOON ¼
1ffiffiffi
2
p N ; 0j i þ ej/ 0;Nj i
	 


ð14Þ

NOON states allow us to make precision phase
measurements in optical interferometry. NOON-state
generation with Josephson-junction circuits is reported
in [84, 85].

Figure 7. Josephson-junction circuit.

Figure 8. Schematic circuit diagram of the DCPJPA [77].
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7. Applications

JPAs are of fundamental importance as compo-
nents of superconducting quantum information process-
ing systems and as interfaces to conventional
electronics.

Josephson circuits allow preparation, manipula-
tion, and measurement of quantum states and can be
applied for quantum signal processing, quantum-state
engineering, and quantum computing [81, 86–103].
Josephson charge qubit circuits for coherent quantum
information processing are described in [97, 98].
Quantum superposition has the potential of high
parallelism and efficiency, if the decoherence problem
can be solved [104]. Using long arrays with 1000
Josephson junctions amplified in multiple eigenmodes
with frequencies below 10 GHz has been achieved, and
qubit quantum jumps were detected [105].

Quantum radar and metrology systems apply
quantum phenomena to enhance measurement sensitiv-
ity. Due to the Heisenberg uncertainty principle,
quantum mechanics imposes limits on the precision of
radar measurements. The application of quantum
mechanically entangled or squeezed light to illuminate
objects can provide substantial enhancement of accura-
cy for detecting and imaging objects in the presence of
high levels of noise and loss. Quantum radar technology
is based on the phenomenon of quantum mechanical
entanglement of states [106–111]. In quantum radar
applications, Josephson-effect-based electronics can
provide for squeezed-state generation or photon detec-
tion.
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