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Abstract – Radiating modes supported by wave-
guide-based leaky-wave antennas are analyzed in terms
of field distribution and a propagation constant. An
analytic approach for computing the propagation
constant of transverse electric modes in the partially
open waveguide and on the basis of the transverse
resonance method is presented, making use of a
dielectric cover and a partially reflective surface cover.

1. Introduction

Leaky-wave antennas (LWA) are designed by
suitably controlling the leakage rate of a guiding
structure [1]. A simple structure that is typically used
to synthesize leaky antennas consists of a Fabry–Perot
(FP) cavity. The FP cavity typically consists of two
partially reflective surfaces (PRSs) that can create
constructive interferences at the resonance frequencies
of the cavity [2]. By using the image theorem, the same
effects can be obtained with a single PRS located above a
perfectly conducting ground plane. The working fre-
quency of the leaky antenna corresponds roughly to the
first resonance point of the cavity that can be computed
with a simple ray optic approach. However, to gain a
deeper understanding of the antenna radiation mecha-
nism, the behavior of the modal propagation constant has
to be determined. The propagation constant of each mode
inside the FP cavity is a complex quantity: the real part
represents the phase constant of the traveling wave and
the imaginary part is related to the leakage rate of the
wave power, which is gradually lost by the cavity when
radiated in free space. Depending on the specific
configuration of the cavity, different modes are support-
ed, and typically, one of them is used to synthesize the
leaky antenna. The FP cavity can be synthesized both in
a bidimensional and unidimensional fashion [3]. In the
former case, a source is placed in the center of the cavity,
and a directive pattern is achieved on both planes. In the
latter case, the source is placed in the center of a shielded
cavity, obtaining a fan beam with a high directivity along
one direction. In both cases, multiple sources [3–6] can
be used to better illuminate the cavity or to obtain array
thinning.

2. Radiation Mechanism

The LWA is a traveling wave antenna character-
ized by a wave guided through an electromagnetic (EM)

structure that releases energy gradually into the
surrounding space. The energy release is obtained by
replacing a part of the guiding structure with a surface
that is partially reflecting and partially transmitting. The
PRS can be synthesized either with a uniform dielectric
[1], with a relatively high permittivity, or, for instance,
with a metasurface. When the guiding structure is
partially opened, the propagation constant inside the
structure becomes complex because both delay and
leakage are experienced by the traveling wave. The
complex propagation constant is characterized by a real
part bz, which accounts for the phase delay of the wave,
and an imaginary part az, which is related to the energy
leakage:

kz ¼ bz � jaz ð1Þ
A bidimensional sketch of the traveling wave

radiation and the radiation direction is shown in Figure
1. If a is small compared with b, the radiation direction
h can be computed as

h ¼ cos�1 bz=k0

� �
ð2Þ

where k0 is the free-space propagation constant.
The antenna can be interpreted also as the FP

cavity by using ray optics [2, 7, 8]: in this case, the
leaky waves are represented by the rays bouncing from
the top to the bottom of the cavity and vice versa,
gradually releasing in-phase electric fields. The cavity
can be excited by a small nondirective antenna, which
can be a dipole, a patch antenna, a waveguide, or
another type of source. Each type of source is
characterized by a specific configuration of the EM
fields and thus will excite a particular modal
configuration inside the FP cavity. Modal configura-
tions for a shielded waveguide FP cavity are analyzed
in Section 4.

4. Radiating Modes

In the configuration shown in Figure 2, the top
wall of the waveguide is replaced by a PRS; thus, the
cavity is allowed to radiate toward the y direction.
According to Figure 2, the height of the waveguiding
structure is named b, and the width is named a. Once
fixed, the height b, for instance, to 15 mm, the number
of propagating modes is determined by the width a. The
propagating modes for two waveguide configurations
with a equal to 21 mm (WG1) or 10 mm (WG2) are
summarized in Table 1. In WG1, the first propagating
mode is the transverse electric (TE10), and the second
mode is TE01. The former mode is radiating if the top of
the waveguide is perforated with an array of slots

Manuscript received 30 June 2020.

Filippo Costa and Giuliano Manara are with the Microwave and
Radiation Laboratory, University of Pisa, Via Caruso 16, 56122
Pisa, Italy; e-mail giuliano.manara@unipi.it.

URSI RADIO SCIENCE LETTERS, VOL. 2, 2020 DOI: 10.46620/20-00131



because the current flowing of the waveguide is
interrupted [9]. However, using this mode configuration
does not allow us to synthesize a broadside antenna,
even with a central feed. The second mode TE01 is,
instead, useful for radiation because the propagation
constant has a nonzero component along the y direction.
Therefore, the cavity width can be reduced to a ¼ 10
mm (WG2) so that the first mode cut-off frequency can
be moved above that of the radiating mode, thus
avoiding that part of the energy is coupled with the TE10

mode.
In this case, the TE01 mode becomes the

fundamental mode supported by the waveguide WG2.
Note that the TE01 mode of WG2 can be seen as the
fundamental mode (TE10) of a conventional rectangular
waveguide, rotated by 908 with respect to WG1, so its
larger side becomes parallel to the y-axis. This ensures
the energy to be radiated from the top side of the cavity
once the metallic wall is replaced by the PRS. This
antenna configuration allows us to radiate the broadside
by using a waveguide feed from the bottom side with
the electric field oriented along the x direction. Indeed,
radiation occurs through the smaller side of the standard
rectangular waveguide rotated 908.

5. Propagation Constant Calculation

The frequency behavior of both the real part and
the imaginary part of the propagation constant of the
guided leaky waves can be computed by solving the
dispersion equation obtained with the transverse
resonance method [10]:

Zdown þ Zup ¼ 0 ð3Þ

The transverse transmission line models (along
the y direction) of the FP cavity, both for the dielectric
cover and the FSS cover, are shown in Figures 3a and
3b, respectively. The transcendental function in (3) can
be solved both for the TE and Transverse Magnetic
(TM) modes. The derived propagation constant is a
good approximation of the real structures reported in
Figure 2 (assuming that the metallic side walls extend to
infinity in the y direction). We derive the solution of the
equation for TE-polarized modes because they are used
to synthesize the leaky antenna. The impedance Zdown is
defined as

ZTE
down ¼ jZTE

0 tan ky1b
� �

ð4Þ

The impedance Zup in case of the dielectric cover
is

ZTE
up ¼ ZTE

2

ZTE
0 þ jZTE

2 tan ky2d2

� �
ZTE

2 þ jZTE
0 tan ky2d2

� � ð5Þ

where ZTE
2 ¼ xl0ð Þ

�
ky2 is the characteristic impedance

of the superstrate along the y direction, with ky2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2er2 � k2
z

q
, ZTE

0 ¼ xl0ð Þ
�
ky0, and ky0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2 � k2
z

q
.

Also, d2 and er2 are the thickness and the relative

dielectric permittivity of the superstrate, x is the

angular frequency, and e0 and l0 are the dielectric

permittivity and magnetic permeability of free space,

respectively. The impedance Zup for the FSS case is

Figure 1. (a) Propagation constant and radiation angle of the leaky
wave and (b) bidimensional sketch of the TE mode propagation inside
the FP cavity and radiation pattern.

Figure 2. (a) Perspective view, (c) top view, and (e) side view of the
unidimensional shielded cavity closed with a PRS. (b) Perspective
view, (d) top view, and (f) side view of the unidimensional shielded
cavity closed with a dielectric.

Table 1. Cut-off frequencies of the first three modes in WG1 and
WG2 configurations

a (mm) b (mm) Mode TE10 TE01 TE11

WG1 21 15 fc 7.14 10 12.8
WG2 10 15 fc 15 10 18

Figure 3. Transmission line models (along the y direction) of the
cavity with (a) the dielectric cover and with (b) the PRS cover.
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ZTE
up ¼ ZTE

PRS==ZTE
0 ð6Þ

Thus, (3) can be solved numerically by searching
the zeros of the dispersion equation in the complex
plane. One approach consists of searching the solutions
for high-frequency points, located close to the real axis,
by perturbing the closed waveguide solution. The
remaining lower frequency points can be derived
iteratively [3]. Approximate analytical expressions of
the leaky-wave complex propagation constant can also
be derived by using different strategies. The approach
proposed in [11] was based on a perturbation expansion
of the closed ideal waveguide propagation constant,
when one of the faces was substituted by a PRS. An
alternative expression can be derived by assuming that
the cavity height is approximately h1 ’ nk=2, where n is
an integer number [12].

By using this hypothesis, Zdown in (4) can be
approximated as

ZTE
down ’ jZTE

0 ky1bþ np
� �

ð7Þ

where b is the cavity height. An approximation for
the upper impedance Zup for the dielectric cover
can be obtained by using the approximation of a
quarter wavelength impedance transformer [12]

(Z
TE=TM
up ¼ Z

TE=TM
0

.
er2). By using the aforementioned

simplifications, an analytical expression of the TE

propagation constant in the y direction can be

derived [12]:

kTE
y ¼

pk0

2h2
1

2
h1

k0

þ j
p
er2

� 	
ð8Þ

For the PRS superstrate, the upper impedance Zup

is computed as the parallel connection of the PRS
impedance and the free-space impedance. If the angular
variation of the free-space impedance is retained, an
accurate expression of the normal component of the
propagation constant is derived [3]

kTE
y ¼

1

2bZTE
PRS"

� bl0x� ZTE
PRS pþ jð Þ

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl0x� ZTE

PRS pþ jð Þ
� �2 þ 4p bZTE

PRS

� �
l0x

q #

ð9Þ
where ZTE

PRS represents the PRS impedance at normal
incidence. Note that the dependence of the PRS
impedance on the angle is not considered in this
expression, because for the inductive grid superstrate,
the impedance is independent of the incidence angle for
TE polarization [13]. For the dielectric-filled cavity, an
analytic expression can be derived by neglecting the
dependence of the free-space impedance on the surface
wave propagation constant kz. In this case, the normal
propagation constant is

kTE
y ¼ j

ZTE
PRS þ 10

� �
xl0p

10ZTE
PRS þ jxl0b ZTE

PRS þ 10

� � ð10Þ

Once the propagation constant is computed
along the normal direction, the leaky-wave propaga-
tion constant is obtained as kTE

z ¼ bz � jaz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er1k2

0 � kTE
y

� �2
r

. The accuracy of the analytical

expressions is checked in Figure 4 for two different

grids parameters. The curves obtained through

analytic expressions are compared with the curves

derived by numerically solving the transcendental

equation in (3). As the reflectivity of the grid

decreases (more leakage), the accuracy of the

perturbation approach proposed in [11] deteriorates

more rapidly than the analytic expression proposed in

(9). For sake of comparison, in both cases, we used

the same expressions for the grid impedance [13]. The

dielectric-filled cavity case is reported in Figure 5.

The case of the air-filled cavity with dielectric cover

is reported in Figure 6, where the numerical solution

is compared with the propagation constant derived

through relation (8).

Figure 4. Normalized leaky-wave phase (bz=k0) and attenuation
(az=k0) constants as a function of frequency for the relevant TE leaky
mode of the LWA. Inductive grid PRS superstrate: (a) D¼5 mm and g
¼ 0.15 mm and (b) D ¼ 5 mm, g¼ 0.5 mm.
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6. Conclusion

Some analytical expressions for computing the
propagation constants of waveguide-based LWA have
been presented. Both cases of dielectric and PRS covers
have been considered.
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Figure 5. Normalized leaky-wave phase (bz=k0) and attenuation
(az=k0) constants as a function of frequency for the relevant TE leaky
mode of the LWA. Inductive grid superstrate: D¼ 5 mm and g¼ 0.5
mm. The cavity is filled with the dielectric (er1 ¼ 1.5).

Figure 6. Normalized leaky-wave phase (bz=k0) and attenuation

(az=k0) constants as a function of frequency for the relevant TE leaky

mode of the LWA. Dielectric superstrate: er¼ 9 and d2¼ 2.5 mm.
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