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Abstract – Scattering by a metallic wedge with an
aperture angle equal to p rad divided by an even integer
is considered in the phasor domain. It is shown that
under incidence by multiple plane waves of appropriate
number, direction, phase, and polarization, the edge of
the wedge does not scatter, and geometrical optics
provides the exact, closed-form solution to the bound-
ary-value problem.

1. Introduction

The exact scattering of a plane electromagnetic
wave by a metallic (perfect electrical conductor [PEC])
wedge of arbitrary aperture angle was obtained by
MacDonald [1] as an infinite series of circular-cylinder
wave functions. Exact geometrical-optics solutions for
wedge regions involving both metallic wedges and
penetrable wedges either consisting of isorefractive
material or subject to total transmission have been
published [2–6]. The only known exact geometrical-
optics solution to the scattering of a single plane wave
by a wedge is that of a right-angle wedge made of
double-negative metamaterial [7].

An exact geometrical-optics (GO) solution to the
scattering of a single plane wave by a convex metallic
wedge is not possible; however, such a solution exists
for certain wedges if the primary field consists of more
than one plane wave, as was recently shown for
wedges with aperture angles of p/2 rad and p/4 rad [8,
9].

In this work, a metal wedge of aperture angle p/2n
rad is considered, where n is a positive integer. An exact
GO solution is obtained in Section 2 when 4n� 1 plane
waves with appropriate direction, polarization, and
phase are incident upon the wedge. These results were
recently presented at a conference [10].

2. Exact Geometrical-Optics Solution

Consider a PEC wedge with aperture angle p/2n
rad, where n ¼ 1, 2, 3, . . . is a positive integer. With
reference to circular-cylinder coordinates (q, u, z)
related to the rectangular coordinates (x, y, z) by x ¼
qcosu, y ¼ qsinu, the edge of the wedge coincides
with the z-axis and the faces of the wedge are the
half-planes u¼ p and u¼ pþ p/2n. Starting from the

positive x-axis (u¼ 0), let us divide the space into 4n
angular regions, each of angular width p/2n rad; one
region is occupied by the PEC wedge, and the other
4n � 1 regions by free space. There are 4n � 1
incident plane waves, incoming one in each free-
space angular region, which are image-symmetric
with respect to the boundaries of the angular regions.
The directions of incidence of the primary plane
waves are

ui
l ¼ l � 1ð Þ p

2n
þ u0 ðl odd : l ¼ 1; 3; . . . ; 4n� 1Þ;

¼ l
p
2n
� u0 ðl even : l ¼ 2; 4; . . . ; 4nÞ;

ð1Þ
where 0 � u0 � p=2n and l ¼ 2n þ 1 is excluded
because it corresponds to an image wave inside the
PEC wedge.

For E-polarization (electric field everywhere
parallel to the edge of the wedge), the incident waves
have equal amplitude and are alternatively out of phase
at the edge:

Ei
lz ¼ �1ð Þlþ1

e jkq cos u�ui
lð Þ; ð2Þ

where 1 � l � 4n and l¼ 2nþ 1 is excluded. When the
GO reflections of the incident waves on the faces of the
wedge are added to the incident waves, the total field
has no discontinuities across optical boundaries and
consists of the sum of the 4n� 1 incident fields plus the
field of the image wave inside the wedge:

E eð Þ
z ¼

X4n

l¼1

�1ð Þlþ1
e jkq cos u�ui

lð Þ

¼
X2n

m¼1

e jkq cos u�u0� m�1ð Þp
n½ � � e jkq cos uþu0�mp

nð Þ
n o

;

ð3Þ
the corresponding magnetic-field components are ob-
tained from (3) via Maxwell’s equations:

H eð Þ
q ¼ Y

X2n

m¼1

sin u� u0 � m� 1ð Þ p
n

h in

e jkq cos u�u0� m�1ð Þp
n½ �

� sin uþ u0 � m
p
n

h i
e jkq cos uþu0�mp

nð Þ
o
;

ð4Þ
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H eð Þ
u ¼ Y

X2n

m¼1

cos u� u0 � m� 1ð Þ p
n

h in

e jkq cos u�u0� m�1ð Þp
n½ �

� cos uþ u0 � m
p
n

h i
e jkq cos uþu0�mp

nð Þ
o
;

ð5Þ

where Y is the intrinsic admittance of free space. It

follows from (4) that the surface current densities on the

faces of the wedge are

J eð Þ
z ju¼p ¼ Y

X2n

m¼1

sin u0 þ m� 1ð Þ p
n

h in

e�jkq cos u0þ m�1ð Þp
n½ �

þ sin u0 � m
p
n

� �
e�jkq cos u0�mp

nð Þ
o
;

ð6Þ

J eð Þ
z ju¼pþ p

2n
¼ �Y

X2n

m¼1

sin u0 þ m� 3

2

� �
p
n

� ��

e�jkq cos u0þ m�3
2ð Þpn½ �

þ sin u0 � m� 1

2

� �
p
n

� �

e�jkq cos u0� m�1
2ð Þpn½ �
	
: ð7Þ

It can be verified that the currents vanish at the
edge q ¼ 0 of the wedge.

For H-polarization (magnetic field everywhere
parallel to the edge of the wedge), the incident waves
have equal amplitude and are in phase at the edge of the
wedge:

Hi
lz ¼ Ye jkq cos u�ui

lð Þ; 1 � l 6¼ 2nþ 1 � 4nð Þ ð8Þ
and the total field is

H hð Þ
z ¼ Y

X4n

l¼1

e jkq cos u�ui
lð Þ

¼ Y
X2n

m¼1

e jkq cos u�u0� m�1ð Þp
n½ � þ e jkq cos uþu0�mp

nð Þ
n o

;

ð9Þ

E hð Þ
q ¼ �

X2n

m¼1

sin u� u0 � m� 1ð Þ p
n

h in

e jkq cos u�u0� m�1ð Þp
n½ �

þ sin uþ u0 � m
p
n

� �

e jkq cos uþu0�mp
nð Þ
o
; ð10Þ

E hð Þ
u ¼ �

X2n

m¼1

cos u� u0 � m� 1ð Þ p
n

h in

e jkq cos u�u0� m�1ð Þp
n½ �

þ cos uþ u0 � m
p
n

� �

e jkq cos uþu0�mp
nð Þ
o
: ð11Þ

The surface current densities are

J hð Þ
q ju¼p ¼

�Y
X2n

m¼1

e�jkq cos u0þ m�1ð Þp
n½ � þ e�jkq cos u0�mp

nð Þ
n o

; ð12Þ

J hð Þ
q ju¼pþ p

2n
¼

Y
X2n

m¼1

e�jkq cos u0þ m�2
3ð Þpn½ � þ e�jkq cos u0� m�1

2ð Þpn½ �
n o

:

ð13Þ
The currents are perpendicular to the edge of the

wedge and continuous across it.
It should be noted that the PEC boundary

conditions are satisfied not only on the wedge surface
but on all the half-planes u¼ (m� 1)p/2n, m¼ 1, 2, . . .
4n; the technique used herein may be considered an
extension of the method of images. The free space
around the wedge is filled with 2n sets of plane waves
traveling in opposite directions, thus forming 2n
standing waves.

The solutions for the particular cases of wedges
with aperture angles of p/2 rad (n¼ 1) and p/4 rad (n¼
2) were presented in [8] and [9], respectively. For a
wedge with aperture angle of p/6 rad (n¼ 3), it takes 11
incident plane waves to avoid scattering by the edge,
and the total field components parallel to the edge are,
from (3) and (9) with n ¼ 3,

E eð Þ
z jn¼3

Y�1H hð Þ
z jn¼3

	
¼

2
n

cos kq cos u� u0ð Þ½ �7 cos kq cos uþ u0ð Þ½ �

þ cos kq cos u� u0 �
p
3

� �h i

7 cos kq cos uþ u0 �
p
3

� �h i

þ cos kq cos u� u0 þ
p
3

� �h i

7 cos kq cos uþ u0 þ
p
3

� �h io
; ð14Þ

where 0 � u0 � p/6.

3. Discussion and Conclusion

A novel exact and closed-form canonical solution
has been derived for the scattering of multiple plane
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waves by a class of metallic (PEC) wedges of aperture
angle p/2n rad, where n is a positive integer. This
solution is possible because under the prescribed plane-
wave illumination, the edge of the wedge does not
scatter. Aside from the intrinsic value of a novel
canonical solution of a boundary-value problem, the
results obtained may be useful for the validation of
computer solvers.

It is interesting to examine what happens to the
solution when n tends to infinity—that is, when the
aperture angle of the wedge tends to zero (half-plane
case). The series (3) and (9) become integrals when the
number of incident plane waves, each with infinitesimal
amplitude, tends to infinity while u0 tends to zero. For
E-polarization, the field is zero everywhere, which is a
trivial result to be expected on the basis of physical
considerations. For H-polarization, the incident field
equals the total field and is given by

H hð Þ
z jn!‘ ¼ Y

Zp

m¼0

cos kq cos m� uð Þ½ �dm; ð15Þ

E hð Þ
q jn!‘ ¼ �j

Zp

m¼0

sin kq cos m� uð Þ½ � sin m� uð Þdm;

ð16Þ

E hð Þ
u jn!‘ ¼ �j

Zp

m¼0

sin kq cos m� uð Þ½ � cos m� uð Þdm:

ð17Þ
It is easy to verify that (15) satisfies the scalar

wave equation, that the tangential electric field (16) is
zero on the faces u ¼ p of the half-plane, and that the
electric field is zero at the edge, meaning that the edge
does not scatter.

Starting from the exact and closed-form solution
of the scattering of a plane wave by a metallic half-
plane [11] and utilizing a property of Fresnel integrals,
it can be seen that the edge of the half-plane does not
scatter for either polarization when it is illuminated by
two plane waves of appropriate phase and polarization
that are incident on the edge symmetrically with respect
to the half-plane [10]. Therefore, the solution (15–17) is
not the only field configuration for which the edge of the
half-plane does not scatter.

Consequently, it can be stated that the set of
incident plane waves described in this work constitutes
a sufficient but not a necessary condition to avoid
scattering by the edge of the wedge and obtain an exact
GO solution.

A general discussion of the conditions under
which geometrical optics may yield an exact solution is
found in [12]. In order to avoid scattering by the edge of
a wedge, it is not sufficient to eliminate field

singularities near the edge, a result that can be achieved
for a PEC wedge of arbitrary aperture angle under
incidence by two plane waves [13, section 4.4]; it is also
necessary that the boundary conditions on the wedge
surface be satisfied, and that no field discontinuities
occur across optical boundaries. Finally, the results
obtained in this work can be extended easily to the case
of a perfect magnetic conductor (PMC) wedge by
applying the duality principle.
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