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Abstract

Uncertainty in the input specification for deterministic
channel models such as ray-tracing introduces variations in
the predicted signal strength. This necessitates the quantifi-
cation and analysis of the impact of input uncertainties on
the channel models, as a means of ensuring performance ro-
bustness. The polynomial chaos expansion (PCE) method
has emerged as a promising uncertainty quantification tech-
nique compared to the commonly used yet computation-
ally inefficient Monte Carlo methods. However, PCE-based
methods generally suffer from a “curse of dimensionality”,
where the computational cost increases rapidly with the
number of random variables included in the analysis. This
paper applies an orthogonal matching pursuit algorithm to
mitigate the computational cost of PCE and facilitate the
uncertainty analysis of ray-tracing based channel models.
The performance is demonstrated in an indoor environment
and validated against Monte Carlo simulations and experi-
mental measurements.

1 Introduction

Characterization of radio wave propagation is of great im-
portance for the deployment of wireless communication
systems in indoor environments [1]. Consequently, there
has been significant interest in the development of deter-
ministic models such as ray-tracing to study the propaga-
tion characteristics of radio channels. However, the accu-
racy of such models depends heavily on the description of
the modeling environment, which often involves consider-
able uncertainty. Therefore, it is necessary to quantify the
impact of input uncertainties on the output of interest and
give a measure of confidence in the predicted results.

The widely used uncertainty quantification techniques are
the Monte Carlo (MC) and polynomial chaos expansion
(PCE) methods [2]. However, limited by the slow rate of
convergence, the MC method is seldom applied to compu-
tationally large problems such as indoor propagation. Re-
cently, techniques based on PCE have been coupled with
computational electromagnetic methods for the uncertainty
analysis of deterministic channel models [3]. The PCE
method approximates the output of interest with an expan-
sion of orthogonal polynomial basis functions, where each

function is weighted by an expansion coefficient. For a
small number of random variables, the associated expan-
sion coefficients can be evaluated with a few deterministic
simulations. However, as the number of random variables
increases, the computational requirement grows rapidly and
the efficiency of PCE is significantly compromised.

This paper applies an orthogonal matching pursuit algo-
rithm [4] for the uncertainty analysis of ray-tracing based
channel models. The approach can lead to considerable
reduction in the computational requirement by including
only a small fraction of polynomials in the PCE approxima-
tion. The associated expansion coefficients are evaluated
while identifying the necessary polynomials. The effec-
tiveness of the approach is demonstrated in the example of
an underground parking garage, where uncertainties in the
garage dimensions, the wall materials as well as the spatial
locations of transmitting and receiving antennas are con-
sidered. A clear improvement in computational efficiency,
compared to traditional PCE and MC methods, is achieved.

2 Polynomial Chaos Expansion

2.1 Formulation

The PCE method uses a truncated expansion of orthogonal
polynomial basis functions to approximate a random output
function of interest, X(xxx ), as:

X(xxx ) = Â
k2Kp

akYk(xxx ) (1)

where xxx is the vector of random input variables; Yk(xxx ) is
the k-th polynomial basis function and ak is the associated
expansion coefficient; Kp denotes the set of polynomial ba-
sis functions. The mean and variance of the output, X(xxx ),
can be estimated directly through the expansion coefficients
and polynomial basis functions [5].

In general, (1) can be applied to characterize the uncer-
tainty of deterministic channel models by expanding either
the governing equations or the solutions, which are referred
to as intrusive and non-intrusive approaches, respectively.
In this paper, the non-intrusive approach is adopted due to
its simple implementation, where the ray-tracing model is
used as a “black box”.
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2.2 Expansion Coefficients

The total number of expansion coefficients in (1) is

P =
(M+D)!

M!D!
(2)

where M is the number of random input variables and D is
the polynomial order in the expansion [2]. Generally, the
expansion coefficient is evaluated through a Galerkin pro-
jection approach by utilizing the orthogonality of polyno-
mial basis [5]:

ak =
hX(xxx ),Yk(xxx )i

hY2
k
(xxx )i

. (3)

Equation (3) can be further evaluated using numerical
quadrature rules as:

ak ⇡
1

hY2
k
(xxx )i

Q

Â
q=1

X(xxx
q
)Yk(xxx q

)wq (4)

where xxx
q

is the quadrature point and wq is the integration
weight coefficient. As a result, the evaluation of the expan-
sion coefficients can be cast into a numerical integration
problem, where Q deterministic simulations with, respec-
tively, xxx 1, xxx 2, xxx 3, ..., and xxx

Q
, as inputs are required for the

calculation. The commonly used quadrature rules are the
Gaussian and Smolyak sparse quadratures [5], where the set
of quadrature points and integration weights are uniquely
determined by the marginal distributions of the random in-
put variables.

3 Efficient Uncertainty Quantification us-

ing Polynomial Chaos with Orthogonal

Matching Pursuit

The Smolyak sparse quadrature generally requires sub-
stantially fewer deterministic simulations compared to the
Gaussian quadrature. However, when M or D is large, the
computational cost is still considerable. In general, when
the output function of interest is smooth, the PCE exhibits
sparsity in that a small fraction of expansion coefficients
are significant [6]. Therefore, we could exploit this sparsity
and identify the polynomials that are necessary for the PCE
approximation. The output function in (1), X(xxx ), can be
approximated as:

X(xxx )⇡ Â
k2Ks

akYk(xxx ) (5)

where Ks denotes the smallest set of polynomial basis func-
tions that need to be retained and Ks ⇢ Kp. As a result,
only a small fraction of all the unknown expansion coef-
ficients need to be evaluated, leading to a reduction in the
computational requirement.

A natural question is how to discern which polynomial ba-
sis functions are appropriate to be included in Ks. This can
be solved through the following optimization problem [6]:

minkak0 subject to fa = y (6)

where k ·k0 denotes the number of nonzero elements of the
argument; a is a P⇥1 vector containing all associated ex-
pansion coefficients for the polynomials in Kp; f , referred
to as the measurement matrix [6], is an N⇥P matrix that
maps a to y; y is a N⇥1 vector containing the sampled out-
put results from N deterministic simulations.

In practice, solutions to the problem (6) can be obtained ef-
fectively via the orthogonal matching pursuit (OMP) algo-
rithm [4]. The OMP algorithm is a greedy search approach,
which iteratively finds the set of polynomial basis elements
that best approximate the sampled output results y. On each
iteration, the algorithm includes a new polynomial basis el-
ement into an active basis set. The associated expansion
coefficients are updated through a least-squares optimiza-
tion to minimize the approximation residual, r= y�fa [4].
The process is repeated until all significant polynomials are
included.

When applying such an approach to the uncertainty analysis
of deterministic channel models, the whole procedure can
be summarized as:

Step 1 Generate N sets of randomly sampled inputs for
the deterministic simulations and obtain the corre-
sponding output results y; Set r = y and A = ?,
where r is the approximation residual and A is the
index set of the retained polynomials for the PCE
approximation.

Step 2 Find the index of the polynomial basis function
that is most correlated with the current approxima-
tion residual r [4]:

k = argmax
j/2A |hr,f (:, j)i| (7)

where f (:, j) denotes all elements at the j-th col-
umn of the measurement matrix f .

Step 3 Update the index set as A = A [ k and add the
corresponding polynomial basis function, Yk(xxx ),
to the active basis set.

Step 4 Calculate the associated expansion coefficients, ba ,
through a least-squares optimization [4]:

ba = argminky�fak2 subject to ai = 0,8i /2 A (8)

Step 5 Update the approximation residual, r = y � fba ,
and calculate the relative difference between the
sampled output results and the PCE approximation
using the following Euclidean error norm:

E =

r
1
N

ky�fbak2
2

r
1
N

kyk2
2

. (9)
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Step 6 Repeat Steps 2–5 until the maximum number of
iterations, Imax =min(P,N), has been reached or E
is above its minimum value for at least 10 % of Imax
iterations [7]; Record the minimum error, Emin .

Step 7 Compare Emin with a preset threshold Eth. If Emin �
Eth, increase the number of sampled simulations,
N = N + 1, and repeat Steps 1–7. Otherwise, ter-
minate.

The minimum N that satisfies the criterion determines the
number of required deterministic simulations and the cor-
responding PCE approximation is used for the uncertainty
analysis.

4 Numerical Results

In this section, the approach discussed in the previous sec-
tion is applied for the uncertainty analysis of ray-tracing
based channel models. The considered environment is an
empty underground parking garage, as shown in Fig. 1. The
measurement is carried out at 2.4 GHz, where the transmit-
ter (Tx) is fixed and the receiver (Rx) is moved along a line
as shown in Fig. 1. Vertically polarized, highly directional
antennas are used for both the transmitter and receiver.

Tx

Pillar
(Cross-section: 1m   0.3m)

Rx

1.8 m

80 m

0 m

2.44 m

2.0 m

Figure 1. Diagram of the underground parking garage.

An image-based ray-tracer [8] is used to generate the out-
put of interest, which is the received power. Various sources
of parameter uncertainty are considered, including random-
ness in the garage height, the spatial locations of the trans-
mitting and receiving antennas and the wall material prop-
erties. All considered uncertain input parameters are sum-
marized in Table 1. The floor and ceiling are formed from
poured concrete and thus surface roughness is taken into
account.

Following the procedure discussed in the previous section,
first the number of RT simulations is determined. Since the
output is a vector of the received power at different loca-
tions, therefore, the minimum relative error, Emin, is eval-
uated as the mean of values calculated at all the receiver
locations. The received power is sampled at every 0.1 m

Table 1. Uncertain Input Parameters in the RT Model.

Uncertain Input Nominal
Value Distribution

Garage Height, H 2.44 m s = 0.02
Tx Height, hTx 2.0 m s = 0.03
Rx Height, hRx 1.8 m s = 0.03

Tx Lateral Position, lTx 3.36 m s = 0.15
Rx Lateral Position, lRx 2.36 m s = 0.15
Relative Permittivity, er 5 s = 0.5

Conductivity, s0 0.1 s = 0.03
Surface Roughness, sh 0 m s = 0.05

and a threshold of Eth = 1 % is used throughout the paper.
The polynomial order for the PCE approximation at differ-
ent received locations is chosen adaptively and Dmax = 5.
The trend of the relative error as a function of the number
of RT simulations is plotted in Fig. 2. As can be seen, a
total number of 31 RT simulations are required.

0 10 20 30 40 50 60 70 80 90 100
Number of Deterministic Simulations

10-2

10-1

100

R
el

at
iv

e 
Er

ro
r

Figure 2. Relative error vs. number of RT simulations.

The mean values and 90 % confidence intervals of the re-
ceived power computed using our approach are compared
against statistics computed using 10000 MC simulations
and measured data in Fig. 3. The good agreement demon-
strates the validity of the approach. The results in Fig. 3 also
show that the variations in the received power can be con-
siderable for relatively small input parameter uncertainties,
demonstrating the necessity for the uncertainty analysis of
deterministic channel models in indoor environments.

The number of required deterministic simulations and ac-
curacy for different uncertainty quantification techniques
are compared in Table 2. In order to numerically quantify
the accuracy of different methods, a mean absolute error is
evaluated as follows:

EMAE =
1

N0

N0

Â
i=1

���P(x,y,zi)�Pref (x,y,zi)
��� (10)
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Table 2. Comparison of the number of deterministic simulations and mean absolute errors for different uncertainty quantifica-
tion techniques.

Method Monte
Carlo

PCE (Gaussian) PCE (Smolyak) PCE
(Proposed)D = 1 D = 2 D = 3 D = 1 D = 2 D = 3 D = 4

Number of
Deterministic
Simulations

10000 256 6561 65536 17 129 609 2193 31

Mean Absolute
Error [dB] — 0.58 0.13 0.11 0.75 0.14 0.12 0.12 0.13
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Figure 3. Received power at 2.4 GHz in the underground
parking garage.

where P(x,y,zi) and Pref (x,y,zi) is the 90 % confidence in-
tervals of the received power at the (x,y,zi)-th sampling lo-
cation obtained from the PCE method and the reference, re-
spectively; N0 = 1600 is the total number of samples; The
results generated from 10000 Monte Carlo simulations are
used as the reference.

It can be observed that the accuracy of our approach is very
close to traditional PCE methods with D = 2 or higher.
However, the computational requirement is reduced signifi-
cantly. For example, the number of RT simulations required
for our approach is only around 24% compared to the one
using a Smolyak scheme with D = 2.

5 Conclusion

The uncertainty quantification of deterministic channel
models is generally computationally intensive since a large
number of expensive simulation models need be evalu-
ated. This paper presented an efficient approach for the
uncertainty analysis of ray-tracing based channel models.
The approach utilized the orthogonal matching pursuit al-
gorithm to mitigate the computational cost of PCE meth-
ods. Its effectiveness has been demonstrated by compar-
isons to traditional PCE and MC methods in the example of

an underground parking garage, where considerable com-
putational savings were achieved.
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