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Abstract

In this paper, we present physics-informed graph residual
learning (PhiGRL) to model the scattering of 3D PEC tar-
gets by solving combined field integral equations (CFIEs).
Emulating the computing process of the fixed-point itera-
tion method, PhiGRL iteratively modifies the candidate so-
lutions of CFIEs regarding the residuals of CFIEs until con-
vergence. In each iteration, the matrix-vector multiplication
of CFIE is incorporated to guide PhiGRL. The graph neu-
ral networks (GNNs) are applied to deal with the unstruc-
tured discretization and varying unknown numbers. With
the data set generated by the method of moments (MoM),
PhiGRL is first trained to model the scattering of basic
3D PEC targets, including spheroids, conical frustums, and
hexahedrons. Furthermore, the transfer learning strategy
is adopted to migrate PhiGRL to simulate airplane-shaped
targets. Numerical results validate that PhiGRL can provide
real-time and accurate simulations of 3D PEC targets. This
study explores the feasibility of combining deep learning
and physics to accelerate the 3D EM modeling.

1 Introduction

Electromagnetic (EM) modeling has been widely applied
in electronic engineering and scientific research [1, 2]. The
aim of EM modeling is to accurately describe electromag-
netic phenomenon by applying computational methods to
numerically solve Maxwell’s equations with certain bound-
ary conditions. Typical computational methods include
finite-difference method [3], finite-element method [4] and
MoM [5]. In practical applications, especially 3D EM mod-
eling problems, there are usually a large number of un-
knowns, making the solving process computationally ex-
pensive. It still remains challenging to perform real-time
simulations in 3D EM modeling.

Recently, with the development of high-performance com-
puting, artificial intelligence, especially deep learning
(DL), has been applied in EM modeling, demonstrating un-
precedented computational efficiency [6–14]. Deep neural
networks (DNNs) can be trained directly to approximate
the nonlinear mappings between different physical quanti-
ties [9–12]. These models can improve the computational
efficiency with the help of massive parallelization [9–12].

However, they have poor interpretability and their perfor-
mances are highly dependent on data quality. To overcome
these drawbacks, EM physics and numerical methods are
further incorporated into DNNs for improved robustness
and interpretability [13, 14]. Despite the successful appli-
cation of DL, the solved problems are mostly based on uni-
form discretization. This is limited by the fact that the ap-
plied DL techniques are designed for structured data. In 3D
EM modeling, unstructured grids are usually adopted, such
as triangular or tetrahedral meshes, which makes most DL
techniques inapplicable. The issue of applying DL to 3D
EM modeling defined on nonuniform grids still needs to be
addressed.

In this paper, we present physics-informed graph residual
learning to model the scattering of 3D PEC targets by solv-
ing combined field integral equations. PhiGRL emulates
the computation of the fixed-point iteration method and it-
eratively modifies the candidate solutions of CFIEs until
convergence. In each iteration of PhiGRL, the residuals of
CFIEs are first numerically calculated by incorporating the
matrix-vector multiplications of CFIEs. Then, the residuals
are input to GNNs for predicting modifications of candi-
date solutions, which guides the training of PhiGRL. The
applied GNNs can flexibly tackle the triangular meshes of
3D PEC targets in the form of a graph data structure. Phi-
GRL is first applied to model basic 3D PEC targets, includ-
ing spheroids, conical frustums, and hexahedrons. Further-
more, transfer learning is adopted to migrate PhiGRL for
objects with complex structures, including three types of
airplane-shaped targets. The required data sets for training
PhiGRL are generated by MoM. Numerical results validate
that PhiGRL can accurately model 3D PEC targets with dif-
ferent meshes in real time.

2 Formulation

The surface current of a 3D PEC target satisfies CFIE,
which is a weighted combination of electric-field inte-
gral equation (EFIE) and magnetic-field integral equation
(MFIE) [1, 2]:

CFIE = (1−α) ·MFIE−α · n̂×EFIE

EFIE: n̂×L
(
Js
)
= n̂×Einc(r), r ∈ So

MFIE:
1
2

Js + n̂×K
(
Js
)
= n̂×Hinc

(r), r ∈ So

(1)
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Figure 1. Structure of PhiGRL. GraphConv-[a, b, mean]
denotes the graph convolutional layer of which the input
channel, output channel, and aggregation function are a, b,
mean function. Linear-[c,d] denotes the input and output
channel of the linear layer are c and d. Dropout-[0.5] de-
notes that the dropout rate of the linear layer is 0.5.

where So and n̂ are the target surface and its normal vec-
tor, Einc, Hinc and Js are incident electric, magnetic field
and surface current, Js = Z0Js and Hinc

(r) = Z0Hinc(r),
Z0 is the wave impedance, α = 0.5. The definitions of
L and K can refer to [1, 2]. By applying MoM and
Rao–Wilton–Glisson (RWG) basis functions, CFIE can be
discretized into a matrix equation:

Z ·u = b (2)

where Z, u and b denote the impedance matrix, unknowns
and excitation vector.

Drawing on the fixed-point iteration method, the k-th up-
date equation of PhiGRL to solve Eq. (2) can be written
as [14]:

uk+1 = ur
k +∆

r
k + j(ui

k +∆
i
k)

∆
r
k = Ψ

r(Rk ⊕uk,Θ
r)

∆
i
k = Ψ

i(Rk ⊕uk,Θ
i)

Rk = b−Zuk

(3)

where ⊕ denotes the tensor concatenation, Ψr and Ψi are
GNNs to update the real and imaginary part and they are
parameterized by Θr and Θi respectively. Ψr and Ψi have
the same structure but different parameter sets, as shown
in Figure 1. They comprise graph convolution, graph batch
normalization, ELU nonlinearity, and linear transformation.

In order to apply GNNs, the RWG functions need to be
described in a graph data structure. A graph can be repre-
sented by a pair of two sets (V,E). V = {v1, · · · ,vN} is a fi-
nite set of N nodes and E = {ei j|ei j = (vi,v j)⊆V 2,vi ̸= v j}
is a set of edges. Then, the graph convolution can be ap-
plied, which is expressed as [15]:

fl+1(vi
l+1) = Ws fl(vi

l)+Wa
1

NN (i)
∑

j∈N (i)
e j,i · fl(v

j
l ) , (4)

where fl(vi
l) is the feature map of the i-th node at the l-th

layer, N (i) is the index set of adjacent nodes of vi
l , NN (i)

Figure 2. Illustration of basic 3D PEC targets. O, OT and
OB denote the body, top, and base center.

Figure 3. MSE convergence curve of PhiGRL. The values
of MSE at the 300th epoch are also annotated.

is the number of adjacent nodes in N (i), e j,i is the edge
between v j

l and vi
l , Ws and Wa are trainable parameters of

vi
l itself and its adjacent nodes. The contributions from ad-

jacent nodes are averaged in Eq. (4), which is named mean
aggregation.

The supervised learning scheme is adopted to train Phi-
GRL. With the surface currents computed by MoM as
ground truth, mean squared error (MSE) is applied as the
objective function:

MSE =
||ur

m −ur
g||22

Num

+
||ui

m −ui
g||22

Num

, (5)

where um and ug denote the RWG coefficients computed by
MoM and PhiGRL, Num is the element number of um.

3 Numerical Example

The effectiveness of PhiGRL is first verified by solving
CFIEs of basic 3D PEC targets. PhiGRL is assumed to have
7 iterations. The illuminating wave is vertically polarized
with the amplitude and frequency of 1 and 300 MHz. The
incident angle θ and φ vary in [10◦,90◦] and [90◦,180◦]
in a step of 10◦. Three types of basic 3D PEC targets are
taken into account, including spheroids, conical frustums,
and hexahedrons, as shown in Figure 2. Their body cen-
ters are located at the coordinate origin. The corresponding
geometrical parameters vary from 0.2 to 0.7m and they are
different from each other. Figure 3 plots the MSE conver-
gence curve of PhiGRL. During the training process, both
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Figure 4. Comparison between the surface currents computed by MoM and PhiGRL. In each panel, from left to right are: 3D
surface currents computed by MoM and PhiGRL, absolute error (AE) distribution, bistatic RCS curves on the φ = 0◦ plane.

training and testing MSE drop steadily and they agree well
with each other, which indicates little overfitting. The av-
erage length of the triangular mesh is λ

10 where λ denotes
wavelength. MoM generates 32400 data samples that are
divided for training and testing by 80%-20% ratio. Figure 4
demonstrates three comparisons between the surface cur-
rents computed by MoM and PhiGRL. It can be observed
that not only the predicted and true 3D surface currents are
in good agreement, but also the corresponding bistatic radar
cross-section (RCS) curves on the φ = 0◦ plane match well.

Furthermore, PhiGRL is applied to model objects with
complex structures in a transfer learning manner. Three
types of airplane-shaped targets are considered here, in-
cluding plane A, B, and C, as shown in Figure 5. The cor-
responding control parameters are also denoted in Figure 5.
Transfer learning allows the migration of learned knowl-
edge between analogous domains, which further reduces
training difficulty and the amount of data for a new knowl-
edge domain [16]. PhiGRL is assumed to have 11 itera-
tions, according to the author’s trials, because the structures
of airplane-shaped targets are complex. The PhiGRL model
trained for basic 3D PEC targets is taken as an initialization
of the first 7 iterations here. The frequency and amplitude
of the vertically polarized illuminating wave are 150 MHz
and 0.5. The incident angle θ and φ vary in [0◦,180◦] and
[3◦,180◦] with a step of 5◦ and 3◦ respectively. The aver-
age length of the triangular mesh is set as λ

10 . 6660 data
samples are generated by MoM, and they are divided for

Figure 5. Illustration of airplane-shaped targets. (a), (b)
and (c) are plane A, plane B and plane C respectively.

training and testing based on 80%-20% ratio. The final
MSE of PhiGRL converges below 0.0052. Figure 6 com-
pares the surface currents computed by MoM and PhiGRL.
The predictions are in good agreement with ground truth
and the errors between the corresponding RCS curves are
also small.

4 Conclusions

In this study, we present PhiGRL to model the scattering
of 3D PEC targets by solving CFIEs. PhiGRL iteratively
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Figure 6. The surface currents of airplane-shaped targets.
In each panel, from left to right are: 3D surface currents
computed by MoM and PhiGRL, their AE distribution,
bistatic RCS curves on the φ = 0◦ plane.

modifies candidate solutions until convergence by apply-
ing GNNs to predict modifications. During iteration, the
matrix-vector multiplications of CFIEs are incorporated to
provide physical information. PhiGRL is first to model ba-
sic 3D PEC targets, including spheroids, conical frustums,
and hexahedrons. Then, PhiGRL is migrated for objects
with complex structures, including three types of airplane-
shaped targets. Numerical results validate that PhiGRL
can provide real-time and accurate simulations of various
3D PEC targets with different unknown numbers. This
study offers a potential way to combine graph neural net-
works and electromagnetic physics for 3D EM modeling
with nonuniform discretization.
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