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Abstract 
 
A novel deep convolutional fusion architecture with 
multiple branches is proposed to address the challenges 
posed by electromagnetic inverse scattering problems. 
Traditional inverse scattering techniques suffer from 
various difficulties, including strong ill-conditioning, high 
computational cost, and intrinsic nonlinearity. To 
overcome these challenges, a multi-branch convolutional 
neural network (CNN) is proposed for reconstructing two-
dimensional (2D) images of breast permittivity in order to 
detect tumors. The proposed architecture, which is 
influenced by objective-function methods, inputs 
scattered-field data and ultrasound-derived breast mask as 
prior information to reconstruct images of permittivity. The 
architecture consists of two branches, a decoder-only 
branch and a convolutional branch, to handle inputs of 
different formats. The final reconstructed 2D image is 
obtained by fusing the outputs of these two branches. The 
CNN is trained using eight numerical MRI-based breast 
models. Results demonstrate that the proposed approach 
provides high-quality imaging for high-contrast objects of 
interest. This work opens up a new avenue for real-time 
quantitative microwave imaging using deep learning. 
 
1 Introduction 
 
Microwave imaging has been widely used for various 
imaging applications, including breast cancer detection and 
treatment monitoring [1], subsurface prospecting [2], and 
stored-grain monitoring [3]. However, the associated 
quantitative inverse scattering problem is ill-posed and 
nonlinear, making it challenging to obtain highly accurate 
reconstructions of the complex-valued permittivity. To 
address this challenge, different techniques have been 
developed in the past few decades; however, they often 
require computationally expensive iterative techniques, 
particularly when imaging highly inhomogeneous 
scatterers with high contrast values. Despite the 
advancements made in recent years, images containing 
reconstruction artifacts still remain a great challenge, 
particularly in biomedical imaging, where the resolution is 
lower compared to other modalities.  
 
The field of deep learning has seen a significant expansion 
in recent years, and convolutional neural networks (CNNs) 
have emerged as a particularly powerful tool for solving a 
wide range of scientific and engineering problems. These 
include applications in natural language processing, 

computer vision, and speech recognition [4]. CNNs have 
also been applied to medical imaging [5, 6], with notable 
achievements in the areas of segmentation, detection and 
classification. The use of deep learning techniques in 
medical imaging has been well-investigated for many 
common modalities [7]. CNNs are a type of deep neural 
network that is specifically designed to handle image data 
as inputs, which makes them particularly suitable for 
image-based applications. 
 
In recent years, researchers have explored the utilization of 
machine learning techniques in the context of 
electromagnetic inverse problems with the aim of 
improving the performance of microwave imaging (MWI). 
The state-of-the-art deep-learning-based MWI techniques 
can be broadly categorized into two groups. The first group 
encompasses the utilization of CNNs in combination with 
traditional algorithms to enhance the performance of 
electromagnetic inversion. This includes the use of deep 
learning as a prior or regularization term [4] or as a post-
processing method for denoising and artifact removal [8, 
9]. Both have been shown to improve the performance of 
traditional methods [10, 11]. The second group of 
techniques involves the direct reconstruction of an image 
from measurement data using deep learning techniques. 
While there have been promising studies on the use of deep 
learning techniques for the direct reconstruction of images 
from measurement data in other imaging modalities, such 
as MRI [12] and ultrasound [13], there remains a 
significant need to investigate the application of deep 
learning to the inverse problem in microwave imaging. 
Recent research by Li et al. has demonstrated the potential 
of using deep neural networks for nonlinear 
electromagnetic inverse scattering, but their work has been 
limited to simple homogeneous targets with low contrast 
and two-dimensional (2D) inverse problems [14]. 
Khoshdel et al. have also developed a multi-branch deep 
convolutional fusion architecture that aims to solve 
electromagnetic inverse scattering problems to reconstruct 
3D images of the moisture distribution in stored grain [15].  
 
In an effort to reduce the amount of prior information 
required by the ML model to solve electromagnetic inverse 
scattering problems compared to our previous research 
[15], in this study a novel convolutional neural network 
(CNN) architecture is proposed to directly reconstruct two-
dimensional (2D) permittivity images of the breast. To 
accomplish this, a homogeneous background was taken 
into account during the generation of scattered field data, 



in addition prior images of an ultrasound-derived breast 
mask provide information only regarding the shape and 
location of the breast. The proposed CNN learns to find and 
locate the cancerous breast tumors from sensor-domain 
data, represented as a complex-valued array of transmitter-
receiver measurements, to a 2D image of the permittivity. 
The trained CNN model achieves a higher imaging quality 
compared to traditional inversion techniques in microwave 
imaging. Additionally, the use of trained CNN models 
enables the application of microwave imaging for quasi-
real time monitoring by eliminating the reconstruction 
time. 
 
3 Neural network architecture 
 
The proposed architecture is a multi-branch convolutional 
neural network (CNN) designed to reconstruct two-
dimensional images of the permittivity map of the breast. 
The proposed Architecture is inspired by our previous 
research on reconstructing 3D images of the grain's 
moisture distribution. The model accepts the real and 
imaginary components of microwave scattered-field data at 
multiple frequencies as its primary input. It is worth noting 
that in this paper, a homogeneous background medium 
with a relative complex permittivity of 23.3-j18.46 is used 
as the assumed background for the incident field to 
determine the scattered field data. 
This work draws inspiration from studies that demonstrate 
the improved performance of incorporating prior 
information as an inhomogeneous numerical background 
that modifies the incident/scattered field decomposition 
[16, 17]. That work shows the importance of different 
levels of information considered as background 
information in the success of traditional inverse techniques. 
Thus, with the goal of decreasing the ML model’s reliance 
on prior information, ultrasound-derived breast mask is 
herein utilized as prior information. Fig 1 shows the 
schematic of the proposed architecture.  
 

To integrate this into the proposed model, the first branch 
takes in the scattered-field data, and the second branch is a 
several convolutional layers, which inputs the prior image 
[5]. The outputs of both branches, i.e. the decoder-only 
branch and the U-Net, are then combined through a linear 
combination, which is parameterized. The proposed 
Convolutional Neural Networks (CNNs) were 
implemented using Python 3.9.1 and Keras 2.11.0 with 
Tensorflow backend. A Mac Studio machine equipped 
with Apple M1 Max chip was employed as the computing 
platform. To achieve a suitable scale, the convolutional 
layer weights were initialized using the Xavier 
initialization method. The CNN was trained using an Adam 
optimizer with a batch size of 5 over a total of 50 iterations. 
To mitigate the risk of overfitting, a four-fold cross-
validation strategy was employed.  
 
4 Dataset 
 
Eight numerical tumorless MRI-based breast models are 
used to create the data sets [20,21]. For each model, we 
create fifty images by adding different numbers, locations, 
and sizes of tumors. Each breast phantom is also rotated 11 
times. Therefore, each breast model has 600 unique 
phantoms, and the total number of phantoms for eight 
models is 4800.  
It is assumed that each breast phantom is surrounded by 30 
transceivers. The microwave scattered data for each pair of 
transmitter and receiver pairs is collected at three 
frequencies (f = [1, 1.5, 2] GHz). The relative complex 
permittivity of 23.3−j18.46 is used as a background 
medium.  
5 Results 
 
We demonstrated the performance of our proposed method 
for reconstructing 2D images of permittivity by presenting 
several random examples from the test dataset featuring 
zero, one, or two tumors from various breast models. 
 

 
Figure 1. Schematic of the proposed architecture. The inputs to the network are the normalized real and imaginary parts of 
scattered-field data for three different frequencies and ultrasound-derived tissue regions as an image, and the network is trained 
to output the corresponding true 2D permittivity map.

f1

f2

f3

rea
l

Im
agi
nar
y

rea
l

Im
agi
nar
y

rea
l

Im
agi
nar
y

80
00

90
00

81
92

16
*1

6*
32

25
6*

25
6*

1

25
6*

25
6*

1

25
6*

25
6*

1

25
6*

25
6*

1

Real part of 
Permittivity

Scattered Data

Flatten

Conv(1,1)

Up-Conv

Conv + BN 
+ Relu

Reshape

90
0*

6

Background 
Information



Figure 2 illustrates the reconstructed images produced by 
the CNN and shows the network's capability to identify 
tumors and eliminate the typical artifacts of traditional 
inverse methods. Given that the CNN was trained on a 
dataset of eight MRI breast models, we evaluated the 
generalization of the trained CNN to a completely new 
breast model by testing the model's performance on the 
new model. Figure 3 illustrates the performance of the 
trained CNN when the inputs for a new breast model are 
scattered-field data and prior information image. Results 
show that the model cannot reconstruct tumors for new 
models. It is noteworthy to mention that, in comparison to 
our previous research on stored-grain imaging [16], we 

have attempted to decrease the amount of prior information 
required by the model. This has been achieved not only 
through the utilization of prior images as masks, which 
provide information solely regarding the shape and 
location of the breast, but also through the consideration of 
a homogeneous background in the generation of scattered 
field data. In future work, we will investigate improving 
the generalizability of the model by increasing the number 
of breast models. The techniques learned from the present 
approach will form the basis of extending it to data 
collected using our 3D dual-mode US/MW experimental 
imaging system. 
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Figure 2. The real part of CNN reconstruction results for particular examples with two, one and no tumor. (a, d, g) The 
Background information as input, (b,e,h) Ground truth. (c,f,i) CNN reconstruction.  
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Figure 3. The real part of CNN reconstruction results for particular examples from a totally new breast model. 

 
 
 

 
 



6 Conclusion 
 
In conclusion, our study has shown that Convolutional 
Neural Network (CNN) architectures can effectively solve 
the electromagnetic inverse scattering problem. The 
proposed through the implementation of physical property 
imaging using electromagnetic scattered-field data. We 
have demonstrated the direct imaging of breast tissue 
permittivity from scattered-field data without the need for 
traditional reconstruction techniques. The results indicate 
architecture utilized both raw scattered-field data and prior 
information in the form of ultrasound-derived breast mask 
to successfully find and locate the tumors. The training of 
the CNNs was conducted using a synthetic dataset of 4800 
breast phantoms, which were generated with a randomized 
number, size, and location of tumors. This work highlights 
the potential for CNNs to be a valuable tool in the imaging 
of physical properties in medical applications as well as 
any other application which need real-time imaging. 
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