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A model local interpretation routine for deep learning based radio galaxy classification
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Abstract

Radio galaxy morphological classification is one of the crit-
ical steps when producing source catalogues for large-scale
radio continuum surveys. While many recent studies at-
tempted to classify source radio morphology from survey
image data using deep learning algorithms (i.e., Convolu-
tional Neural Networks), they concentrated on model ro-
bustness most time. It is unclear whether a model simi-
larly makes predictions as radio astronomers did. In this
work, we used Local Interpretable Model-agnostic Expla-
nation (LIME), an state-of-the-art eXplainable Artificial In-
telligence (XAI) technique to explain model prediction be-
haviour and thus examine the hypothesis in a proof-of-
concept manner. In what follows, we describe how LIME
generally works and early results about how it helped ex-
plain predictions of a radio galaxy classification model us-
ing this technique.1

1 Introduction

Radio galaxy morphological classification is highly valued
in radio astronomy as it reveals both the evolution process
of a radio galaxy and how it interacted with the local envi-
ronment [1]. Motivated by the rapidly growing radio source
sample number produced by large-scale radio continuum
surveys (i.e., [6, 7]), people started to face the data chal-
lenge using machine learning. In recent years, multiple
deep learning algorithms have been developed to either find
and classify radio galaxy morphology (i.e., [8]) or do clas-
sification alone (i.e.,[1, 2, 5]). Most of them have achieved
human-comparable classification accuracy.

Besides the robust model performance these algorithms
achieved, their model interpretability received less atten-
tion. Whether a deep learning algorithm is predicting radio
galaxy morphology in the same way we radio astronomers
did remains an ongoing question to answer. The latest
effort to address this problem introduced a self-attention
mechanism to their models, which enabled people to ex-
plain model prediction behaviour by looking at reasonably
static image features from generated model attention maps
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[2]. However, when explaining many state-of-the-art radio
galaxy classification algorithms, post-hoc model explana-
tion methods that do not require model architecture manip-
ulation would still be necessary.

Though radio galaxy classification system has become so
complicated [10], Fanaroff and Riley binary classification
(FR classification hereafter) system remains popular and
used widely [3] since 1974. A radio galaxy would be iden-
tified as either edge-brightened sources (FR II) or edge-
darkened sources (FR I) [2]. In this work, we tried to
explain a deep learning model developed for FR classifi-
cation using an eXplainable Aritificial Intelligence tech-
nique called Local Interpretable Model-agnostic Explana-
tion (LIME)2. In order to perform model interpretation, we
made used of FR-DEEP v2, a machine learning dataset for
FR classification3 to train a Convolutional Neural Network
(CNN) based FR classification algorithm, reaching ∼ 91%
model general accuracy in a testset of 130 radio sources.
Since we here focus on model interpretation, detailed model
training and evaluation process would be shown in Tang and
Yue et al. (2023, in prep.) instead. For the rest of this work,
we would introduce the Felzenszwalb image segmentation
method and how it combines with LIME in Section 2 and
3. Section 4 would shows our early results of how LIME
help explaining model predictions, and we summarize our
conclusion in Section 5.

2 Felzenszwalb

Felzenszwalb [4] is an graph-based image segmentation
method. By seeing each image pixel as a vertice, neigh-
bouring vertices are connected by edges along with weights
measuring the dissimilarity of each vertice pair [4]. For any
two neighbouring image segmented components C1 and
C2, they can only stay independent to each other if their
pairwise comparison D(C1,C2) satisfy:

D(C1,C2) = True if Dif(C1,C2)> Mint(C1,C2) (1)

2https://github.com/marcotcr/lime
3https://github.com/HongmingTang060313/FRDEEP_v2.0
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where Dif(C1,C2) denotes the minimum weight edge con-
necting C1 and C2. Mint(C1,C2) represents the minimum
internal difference (int(C); the largest weight in the neigh-
bouring spanning tree of a component C) considering both
component C1 and C2:

Mint(C1,C2) = Min(int(C1)+
k

|C1|
, int(C2)+

k
|C2|

) (2)

where k is a constant to control the preference of having
larger or smaller segments, and |C1| corresponds to the size
of component C1 (similar for |C2|). The two components
will merge if D(C1, C2) equals False.

Compared with other segmentation methods, Felzenszwalb
can generate image segments or super-pixels neither not
"too coarse" nor "too fine", making it an appropriate tool
when objects of interest in an image share modest sizes. In
the next section, we shall address the connection between
Felzenszwalb and LIME.

3 LIME

LIME was primarily developed to address the "trusting a
prediction" problem, which is vital for decision-making [9].
This is achieved by providing individual model prediction
explanations: In terms of image classification, presenting
visual artefacts that qualitatively correlate typical patches
(in our case, super-pixel) of an image and its model pre-
diction [9].

Before talking about LIME mechanism under the image
classification scheme, we firstly review the definition of the
following variables/functions [9]:

• classifier f: a well-trained complex classification
model (i.e., CNN)

• x (x ∈ Rd): original representations of an image in-
stance awaited for model explanation.

• x’ (x′ ∈ {0,1}d′ ): the binary vector for the inter-
pretable representation of x, representing the "pres-
ence" (1) or "absence" (0) of image super-pixels
formed via image segmentation (Felzenszwalb in this
work).

• g (g ∈ G): an explanation as a model, where G is a
family of interpretable models (i.e., linear models)

• Ω(g): model complexity of g (i.e., number of non-zero
weights if g is a linear model).

• f(x): the probability that x belongs to a typical class.

• πx(z): a proximity measure between instance x and z.

• L( f ,g,πx): a measure to quantify the ability of g to
approximate f in the πx defined locality. The smaller
the L, the better g has performed.

• z′ (z′ ∈ (0,1)d′ ): a perturbed sample containing a frac-
tion of the non-zero elements in x′.

To ensure g is both interpretable to human (low Ω(g)) and
faithful (low L( f ,g,πx)), LIME produces its model expla-
nation by [4]:

ξ (x) = argmin
g∈G

L( f ,g,πx)+Ω(g) (3)

Since LIME aims to perform model-agnostic model expla-
nation, it samples instances around x′ by randomly draw-
ing (hiding) non-zero elements of x′ and gives z′. By re-
covering z′ (weighted by πx(z)) in the original represen-
tation z, one shall obtain f(z). f(z) then can be seen as a
label for explanation model g. These perturbed samples
and their corresponding labels could then be used to op-
timize Equation 3 and finally obtain ξ (x), the model ex-
planation for the instance original representation x. One
can then know which super-pixel in an image has posi-
tively/negatively contributed to class prediction, and hence
evaluate whether the model predicts as humans do qualita-
tively.

4 Application to Radio Galaxy Classification

Though LIME could be a useful model explanation
method, there is a loose restriction of this technique: the
user are often (not always) required to know what to expect
before explaining a model. That is to say, a user should
be aware of which features in an image contribute to ob-
ject classification. Luckily, the FR classification problem
we consider here has reasonably well-defined features for
each class. In this case, LIME can be used to investigate
the following questions:

1. Did the model predict the image class mainly accord-
ing to the central targeted source emission regions?

2. Did the model consider irrelevant emission regions
when making predictions?

3. Did the model predict source class in accordance with
those field regions responsible for typical source class
morphology just as radio astronomers do?

Figure 1 can be seen as an early example of the LIME
model explanation in our work. It can be seen from the 4th
subplot of the figure that for the particular CNN classifica-
tion algorithm in this work, the network has correctly iden-
tified 3C 248 as a FR II source, with both of its radio lobes
contributing to FR II class prediction. On the top left of
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Figure 1. An illustration of sample image model prediction interpretation using LIME. From left to right: (1) The first picture
shows the contour lines of the original FIRST radio survey image of 3C 248 at 3σ level; (2) the second one shows the same
image experinced normalization and was used in the model testing (downloaded from FR-DEEP v2); (3) the third picture
illustrates the super-pixels generated by Felzenszwalb segmentation method, where the different color of the regions represent
different super-pixels; (4) the last one is the interpretation of the picture using LIME. The red regions contribute positively to
the FR II class prediction, while the blue one contributes negatively to the same prediction.

the plot, however, another separate source has contributed
to the FR II classification negatively. In other words, when
there is more than one radio galaxy in an image, the network
can no longer claim "The central image source is a FR II ra-
dio galaxy". For our network, model user then should visual
inspect these images with the aid of generated LIME maps.

In terms of early statistical analysis, by visual inspecting
the 130 samples in our data testset, we found the network
does able to make prediction based on the image central
object in most time, especially when an image contains one
source only. It generally favors hot spots and those source
radio lobes with relatively sharp margins when classifying
a source as a FR II object, whereas the situation of FR I
source classification is more complicated. LIME may also
facilitate image mis-classification, though such diagnostics
does not always succeed and thus require further investiga-
tions. Detailed discussions upon in what aspects can LIME
help interpret our network predictions will be presented in
Tang and Yue et al. (2023, in prep.).

5 Conclusion

We propose the use of LIME, a model-agnostic machine
learning model interpretation technique to explain deep
learning algorithm developed for Fanaroff and Riley radio
galaxy morphology classification task. We present a rou-
tine of using this technique to explain model prediction be-
haviour of a trained CNN based classification algorithm.
In this work, LIME generally segments image into multi-
ple "super-pixels" via Felzenszwalb segmentation method,
and find those super-pixels in an image that contributed to
its model predicted image class. Our early analysis show
that for our trained network:

• predict image class mostly based on central source
emission regions

• when more than one source presented in the same im-
age, model prediction may be biased.

• FR II source classifications given by the network gen-
erally favor hot spots and source radio lobes with sharp
margins.

Situations of FR I classification and mis-classification diag-
nostics are rather complicated, which require further inves-
tigation.
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