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Abstract 
 
The classical Foster’s reactance theorem relates the input 
impedance or admittance to the stored energy inside a 
lossless one-port network. Such relation has been 
successfully applied to the measurement of Q factor for a 
resonator given its one-port response. Sometimes, however, 
a resonator is naturally monitored at more-than-one ports. 
Although there are various methods for Q measurement 
given two-port network parameters, it remains open as for 
whether the Foster-based method can be extended to such 
scenario. In this paper, we first derive the Foster’s theorem 
for the multiport case, providing the relation between the 
stored energy and the N-port Z or Y matrix. Based on the 
result, we then propose a new method for Q-factor 
estimation. A feature of this method is that we directly use 
the whole Z or Y matrices to estimate Q, without reducing 
it to a one- or two-port network. Two simulation examples 
are provided to demonstrate the feasibility as well as the 
detailed operation of this method. 
 
1 Introduction 
 
Accurate measurement of the quality (Q) factor of a 
resonator is critical to many applications such as material 
characterization. There has been a vast amount of methods 
for Q measurement documented in the literature [1], of 
which one important category [2-3] determines the Q based 
on frequency-domain network responses such as the S, Y, 
and Z parameters as they are readily available from VNA 
measurement. In particular, the method of [4] applies the 
Foster’s reactance theorem [5] to estimate the internally 
stored energy of a resonator given its one-port Z or Y 
parameters, which constitutes the numerator in the 
definition of Q. This method does not assume any lumped 
equivalent circuits for the resonator, thus having the 
advantages of being capable of measuring multiple closely-
spaced resonances as well as very-low-Q resonators. One 
example in [4] demonstrates accurate estimation of Q as 
low as 1.57. 
 
Sometimes, however, a resonator is naturally monitored at 
multiple ports. An example is the reverberation chamber 
with several antennas connected to the outside. Although 
there are various methods for Q measurement given two-
port responses like [6], the aforementioned Foster-based 
method [4] does not seem to have been extended to such 
scenario. In particular, we are not aware of any literature 
that describes the Foster’s theorem for a multiport network. 
 

One may argue that given an N-port response, we can 
always reduce it to a one- or two-port and then apply the 
existing methods. However, the termination schemes that 
we adopted in the reduction process will certainly affect the 
resonance. Intuitively, if we terminate a port by a resistive 
load, the Q will reduce; if we terminate a port by a short or 
open, the resonance frequency may change. Therefore, if a 
resonator is originally constructed with multiple ports, it 
should be better to estimate the Q based directly on the 
multiport data. 
 
In this paper, we will first derive the Foster’s theorem for 
the multiport case, based on which we then propose a new 
method for Q measurement. Two examples are provided to 
illustrate the feasibility and operation of the method. 
 
2 Foster’s Theorem for a Multiport 
 
The classical Foster’s theorem [5] states that for a lossless 
one-port with input impedance Z = jX and admittance Y = 
1/Z = jB, the energy stored in the network is given by  
 

(1) 

 
The derivation can be found in [5]. In particular, we note 
that the following relation is obtained during the proof: 
 

(2) 

 
where V and I are the port voltage and current, respectively. 
Now, if the same procedure as [5] are followed for an N-
port network, we will find us arriving at 
 

(3a) 

 
or, written in matrix notation, 
 

(3b) 
 
where the superscript H denotes conjugate transpose and 
the overdot the derivative with respect to ω. For a lossless 
multiport, the Z and Y matrices are purely imaginary [7]. 
Substituting V = jXI or I = jBV into (3b), we have 
 

(4) 



which is the multiport generalization of (1). One important 
thing to note from (4) is that the stored energy depends not 
only on the magnitude of the port voltages or currents as in 
(1), but also on the distribution (or, pattern) of voltages or 
currents across the N ports.

3 Measurement of Q

The definition of Q is

(5)

where ω0 and Ploss are the resonance frequency and power 
loss, respectively. The numerator, W, is the energy stored 
inside the resonator, and is computed in [4] using (1). 
Specifically, we first measure broadband S parameters, and 
then convert to either Z = R + jX or Y = G + jB. Resonance 
is identified to be the frequency where X = 0 or B = 0, while 
the slope of X or B is computed from the data to get W by 
(1). The power loss is given by

(6)

Combining (1) and (6), we get

(7)

The expression (7) is the core of the method in [4]. One 
may notice that the Foster’s theorem (1) is proved for a 
lossless network, while for a real resonator, it is always 
lossy. The validity of using (1) to estimate W for a resonator 
thus becomes questionable.

Although we are not aware of any rigorous analysis for the 
accuracy of applying (1) on a lossy network, it appears that 
one of the two equalities in (1) remains approximately valid. 
Specifically, if the resonator is series-RLC-like, then the 
expression in terms of X, i.e., the first equality in (1), is a 
good estimate for W. For parallel-RLC resonance, likewise, 
the expression in terms of B provides a good estimate for 
W. Intuitively, for a series-RLC resonator, the presence of 
a nonzero R does not alter the slope of X greatly, while for 
parallel-RLC, the presence of G does not alter the slope of 
B. Therefore, in practice we first need to identify the type
of the resonance, and then apply the right expression.

Now, extending to the multiport case, we write Ploss as

(8)

Note that (8) only accounts for loss internal to the network; 
losses due to loadings at the ports are excluded. Combining 
(8) with (4), we obtain the following estimates for Q:

(9)

This is the main equation of the proposed method. One 
apparent difference of (9) from (7) is that the expression 
now depends on the V or I vector. Different excitation 
schemes may result in different values. Then, what exactly
is the quality factor of the resonator?

We recall the meaning of resonance: the energy stored in 
the system is constantly changing (oscillating) between two 
different forms (e.g., E and H fields), and the averaged 
energy is the same in these two forms. Therefore, at 
resonance frequency X = 0 or B = 0 for a one-port, because 
the external does not need to provide any imaginary power 
to the network.

With the same line of reasoning, the resonance of an N-port 
network should be at frequencies where det(X) = 0 or det(B) 
= 0, and that the port currents and voltages satisfy XI = 0 
or BV = 0, i.e., I or V is in the null space of the matrix X
or B, respectively.

We thus have a procedure for Q measurement: first, the
plots of det(X) and det(B) are scanned to find out the 
frequencies of resonance; next, we calculate the null-space 
vectors for X and B at those frequencies; finally, knowing 
the I and V vectors, we then compute Q by (9).

4 Examples

Below, we use two examples to validate the proposed 
method, as well as to illustrate the detailed operations. The 
first example is a transmission line resonator as shown in 
Fig. 1, with length 180° at 1 GHz. The two ports are at the 
two sides of the microstrip. The S parameters are solved by 
Ansoft Designer SV [8], and exported into Python for post-
processing. 

Figure 1. A microstrip λ/2 resonator.

After converting the S parameters to Z and Y parameters, 
we plot the determinants of X and B as shown in Fig. 2. It
can be seen that det(X) = 0 and det(B) = 0 at 1 GHz, which 
reveals the resonance frequency.

Figure 2. The det(X) and det(B) of the resonator in Fig. 1.



Knowing the resonance frequency, we then extract the null-
space vectors of X and B at 1 GHz. Something tricky, 
however, must be noted here. We first plot the X11, X21, B11, 
and B21 around 1 GHz as shown in Fig. 3. Due to symmetry 
and reciprocity, the other two X/B parameters are omitted.

Figure 3. The X11, X21, B11, and B21 around 1 GHz.

It can be seen that, for this resonator, X approaches the zero 
matrix at 1 GHz, and so is B. If we indeed take them as zero 
matrices, then every vector would be a null-space vector of 
X and B. Is that correct?

If we look at the X and B very close to 1 GHz but not 
exactly, we will find that the X and B have the following 
asymptotic forms:

(10a)

(10b)

where x0 and b0 are constants that tend to 0 at 1 GHz. The 
forms of (10) can be readily observed from Fig. 3. Now, 
the null-space vectors of (10) are clear:

(11)

Note that these two vectors are consistent with the physical 
phenomenon: for a λ/2 resonator, the currents at the two 
ports are in-phase if the ports are shorted; similarly, the 
voltages at the two ports are out-of-phase if the ports are 
left opened. We see that (11) in fact defines the conditions 
of resonance: for a λ/2-long transmission line to actually be 
a resonator, its two ports must be either both shorted or both 
opened.

Next, the derivatives of X and B at 1 GHz are computed 
using finite difference, given by (12). We must be careful 
not to mistake them as having the same form as (10); the 
derivatives of X11 and X21 (B11 and B21) are slightly different, 
though not observable in the scale of Fig 3.

(12a)

(12b)

The R and G matrices are

(13a)

(13b)

Using (9), we obtain the Q values: 48.982 from X and R, 
and 49.001 from B and G. The theoretic Q factor of a λ/2 
resonator is β/2α [7], where α and β are the attenuation and 
phase constants, respectively. Using α = 3.3 dB/m and β = 
36.73 rad/m provided by Designer, we obtain Q = 48.3, 
which is in good agreement with our estimates.

One may notice that, for this example, the required 
accuracy for the Z and Y parameters is very high (5 digits). 
In practical VNA measurements, this level of accuracy is 
almost impossible to achieve. The root of the problem, as 
we will see, is the locations of the ports. It is known in 
circuit theory that, for a lossless λ/2 transmission line, the 
Z and Y matrices simply do not exist! Therefore, it can be 
appreciated that when a small amount of loss is introduced, 
the Z and Y parameters will be highly sensitive at the 
resonance frequency.

The second example is shown in Fig. 4, which is the same 
λ/2 resonator as Fig. 1 but observed at different locations. 
Specifically, the port-2 is at 1/3 distance from the right end 
which is left opened. The total length (L1 + L2) remains the 
same (85.4821 mm), so the resonance is at 1 GHz as before.

Figure 4. The same microstrip λ/2 resonator as Fig. 1 but 
with different port location.

Fig. 5 shows the determinant plots, from which we see that 
det(X) and det(B) are still zero at 1 GHz. This is worth 
pointing out, because it verifies that det(X) = 0 and det(B) 
= 0 are indeed the conditions of resonance.

Figure 5. The det(X) and det(B) of the resonator in Fig. 4.

The plot of X11, X21, X22, B11, B21, and B22 around 1 GHz are 
shown in Fig. 6. Now, because the circuit is not symmetric, 
X11 ≠ X22 and B11 ≠ B22.



 
Figure 6. The X11, X21, X22, B11, B21, and B22 around 1 GHz. 
 
In this example, X again tends to the zero matrix at 
resonance. The same method could be used: finding the 
asymptotic form of X near 1 GHz, and then extract the null-
space vector. However, since B is much more well-
behaved at 1 GHz, below we only consider using B to 
estimate Q. At 1 GHz, the B, , and G are given by 
 

(14a) 

 (14b) 

 (14c) 
 
We take the singular vector of B that corresponds to the 
smallest singular value as the null-space vector, which is 
 

(15) 
 
Using the above values and the second equality in (9), we 
obtain the estimated Q = 48.9, which is consistent with the 
theoretic value 48.3. Also, the accuracy requirement for 
this example is much relaxed. Specifically, if we only keep 
two significant digits in (14), we would get an estimate of 
Q = 48.5, which is even closer to the theoretic value. 
 
The null-space vector (15) is worth noting. It is known that 
if the line is lossless and open at both ends, then the voltage 
distribution along the line is V(x) = V0cos(βx) (let port-1 be 
at x = 0). As port-2 is at 2/3 distance from port 1, or x = λ/3, 
the voltage at port-2 is V0cos(2π/3) or −V0/2. Therefore, the 
null-space vector (15) in fact coincides with the voltage 
pattern on the unloaded resonator. This is a remarkable 
consistency. 
 
5 Conclusions 
 
In this paper, we derived the multiport version of Foster’s 
reactance theorem, and applied it to the measurement of Q 
factor. The distinct feature of this method is that we could 
use the whole multiport data directly, instead of reducing it 
to a one- or two-port network. During the procedure, we 

need to solve the null-space vector of the X or B matrix at 
resonance, which turns out to correlate with the voltage or 
current patterns on the unloaded resonator. Two simulation 
examples were provided to demonstrate the feasibility of 
this approach, though the advantages compared to other 
existing methods were not fully understood. Future works 
include testing the method using three- or four-port data, as 
well as real measurements. To reveal the benefits of using 
Foster’s theorem, we may also consider low-Q resonators, 
as well as multiple closely-spaced resonances. 
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