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A Stacked Machine Learning Model for the vertical Total Electron Content Forecasting
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Abstract

This study focuses on the application of an advance ma-
chine learning model (stacked) for forecasting the iono-
spheric vertical Total Electron Content (vVTEC) from 1 to
24 hours in advance. Data are provided by the Global Navi-
gation Satellite Systems (GNSS) receiver installed at Noto,
Italy (NOT1 (1at:36.53, 14.59) data). The stacked model
performance is compared with ANN, CNN and ELM. The
time series used include VTEC and external drivers (solar
and geomagnetic indices) which span from January 1, 2011
to December 31, 2011. The dataset is partition into a train-
ing (80%), validation (10%) and test (10%). Proper exter-
nal drivers have been selected by ranking their importance
of each driver in relation to the vTEC dynamics at different
hours of the day. The most important external drivers re-
sulted to be the 10.7 cm solar flux (F10.7) and the Geomag-
netic Auroral Electrojet index (AE), used together with the
vTEC times series as the input for our model. To measure
the performance of the models, we make use of the statisti-
cal parameters such as root mean square error (RMSE) and
coefficient of determination (R?). In the period analyzed,
the stacked model showed the best performance on the test
dataset with R = 0.97 and RMSE = 0.16 TECU, followed
by ANN, CNN, and ELM with R? = 0.96 and RMSE =0.17
TECU, 0.18 TECU and 0.18 TECU respectively. In con-
clusion, the stacked model is promising irrespective of its
challenges.

1 Introduction

The ionosphere of the Earth is a partly ionized gas that sur-
rounds the planet from about 50 km up to 1000 km and
above. This is a complex system that is disrupted by various
factors including geomagnetic storms, Coronal Mass Ejec-
tion (CME) and other space weather phenomenon and forc-
ing from lower atmosphere [1]. The ionosphere changes
throughout the day, and all of the elements of this highly
coupled system undergo several timeframe changes, from
impulsive solar flares or auroral intensifications (which
lasts for around minutes) to solar cycle lengths (= 11years).
Global Navigation Satellite Systems (GNSS) applications
such as navigation, positioning and timing, rely on L-band
signals passing through the ionosphere received at ground.
The integrity, accuracy and availability of GNSS is greatly

influence by space weather conditions and in particular the
ionosphere is the largest contributor to the error budget
for the GNSS positioning applications. On other hands,
the measurements of GNSS provides useful information
about the distribution of electrons in the ionosphere allow-
ing measuring the integrated umber of free electron along
the signal path from satellite to ground i.e. the slant TEC
(see e.g. [2]) that can be projected to vertical obtaining the
so called vertical Total Electron Content (VTEC). In order
to understand and compare the observed values of VTEC,
many models have been developed. These models may be
divided into two types in general: (i) Traditional methods;
(i) Machine Learning based methods and recently many of
them are based on Machine Learning techniques. Machine
Learning models are widely used, and flourishing in several
fields of study, including image processing and computer
vision for classification, detection, recognition, language
translation and regression problems. In Gebreah K. Z. et
al, 2021 [3], the authors presented a data-driven forecast-
ing of ionospheric vIEC using a Long-Short Time Memory
(LSTM) deep recurrent neural network. In the process of
selecting the input parameters to train the algorithm, they
used the Random Forest algorithm to perform regression
analysis and estimate the importance of input parameters.
Relative importance of 34 different parameters including
the solar flux, solar wind density, and speed of the three
components of interplanetary magnetic field, Lyman-alpha,
the Kp, Dst and Polar Cap (PC) indices were analyzed. The
LSTM method was applied to forecast the vTEC up to 5
hours ahead. A good forecast was achieved with low RMSE
but the RMSE increases as they forecast further into the fu-
ture.

In this work, the goal is to develop a new Machine Learn-
ing based algorithm to forecast ionosphere vTEC values by
stacking several neural networks together, building one ro-
bust ensemble model. The base neural network models se-
lected include ANN, CNN and ELM. The rest of this pa-
per is organized as follows. In section 2, we discuss the
data used and briefly recall how ANN, CNN, ELM and a
stacked model work. Moreover, we also discuss how we
selected the most relevant features (input parameters) for
the prediction task. In Section 3 we provide and discuss ex-
tensive experimental results. Finally, in Section 4 we draw
our conclusions and highlight further possible future inves-
tigation.



2 Data and Methodology

2.1 Data Preprocessing

The GNSS data is obtained from NASA’s Archive of
Space Geodesy (https://cddis.nasa.gov/archive/
gnss/data/daily). In particular, these are 30-second
GNSS data from IGS regional data collections centers
which are compressed in RINEX format to the CDDIS on a
daily basis. In order to extract vTEC of mid-latitude station
NOT1 ( lat: 36.53, lon: 14.59) from the RINEX file for-
mat, we made use of the calibration algorithm developed
by Ciraolo et al, 2007 and detailed in Cesaroni et al, 2015
and Cesaroni et al., 2021. This algorithm is able to estimate
the Differential Code Biases (DCBs) affecting the sTEC es-
timation. From the calibrated STEC from each satellites in
view, the algorithms is then able to project the sSTEC into the
VvTEC by applying a mapping function [5, 2, 6]. To train the
model, vTEC data was divided into three partitions of ratios
0.8, 0.1 and 0.1 respectively for training, validation and test,
as shown in Figure 1. To understand which external drivers
are suitable for our model, we ranked the external drivers
in order of importance with regard to the effect they have
on VTEC values. The external drivers for the year 2011 are
from https://cdaweb.gsfc.nasa.gov and reported in
table 1.

Indices Parameters

Aurora Electrojet AU, AL, AE

Geomagnetic Dst, SYM/H, Kp

Magnetic and Solar  F10.7, SSN,
proton density, flow pressure,
velocity (Vx, Vy , Vz)(km/s),
solar wind (Proton QI)

magnitude of average field vector (nT),

and (Bx, By, Bz)(GSE)

Table 1. External drivers used for our study.
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Figure 1. This figure shows the vTEC dataset (NOT1; lat:
36.53, lon: 14.59) which has been been down-sampled to
5 minutes intervals. The data in blue color are used for
training the neural network models, the ones in red are for
validation and the green ones are used for testing the model.

2.2 Feature Ranking

Machine Learning has been extensively exploited in dif-
ferent fields in order to help and support decision making,
but it is important to understand why a particular output
is produced according to the input (features) used to train
the models. For this reason, we use a feature ranking tech-
nique called permutation of feature importance. To deter-
mine the importance of the external drivers, we used 12 Ma-
chine Learning models including: Random Forest, Support
Vector Regressor (SVR), Extreme Gradient Boosting, Gra-
dient Boosting, linear regression, LASSO, Adaptive Boost-
ing, Decision Tree, Extra Tree, KNN, bagging (using SVR
as estimator), voting (using as estimators: Adaptive Boost-
ing, Decision Tree, KNN, Random Forest, Extra Tree, Gra-
dient Boosting, Extreme Gradient Boosting). Ensembling
these models together ensures robustness by reducing the
variance, since there is no specific Machine Learning model
which is always optimal (no free lunch theorem for Ma-
chine Learning) [7]. Before using the permutation impor-
tance technique, we first checked for multicollinearity be-
tween the external drivers and removed the correlated ones
by using a threshold of 0.5 (in particular sym/h correlated
with Dst (0.95) & AL (0.50), SSN correlated with F10.7
(0.89), flow pressure correlated with proton density (0.81),
AL correlated with AU (0.5) & Dst (0.5), kp correlated with
AE (0.71), flow pressure (0.5), & mag_avg (0.52) and AU
correlated with AE (0.86) & kp (0.69)). Since the lag be-
tween the solar and geomagnetic forcing and the response
of the ionosphere is not fully known understood, we per-
formed 24 different feature ranking at different hours by
using the external drivers as input variable and vTEC val-
ues as output at different hours with regard to the hour
of interest. The overall ranking of the features (external
drivers) are depicted in Figure 2. The best two features
have been selected for the predictive model at different
hours. The most important ones include F10.7, Dst, AE
and mag_avg_B_vector.

2.3 Predictive Model

In order to build our predictive model, we required input
dataset including the two best-ranked external features for
different hours with 24 hours and vTEC times series. We
took the previous 24 hours of the vTEC and the two best
external drivers times series as the features of each instant
of the training dataset. In this section we briefly introduce
the different ML algorithms used in this work.

2.3.1 Artificial Neural Network (ANN)

Neural networks [8] are learning machines potentially con-
taining a large number of neurons, which are connected in
a layered fashion. Learning is achieved by adjusting the
synaptic weights to minimize a predefined cost function.
The back-propagation algorithm was a breakthrough, since
it enabled training neural networks on a set of input-output
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Figure 2. This figure shows the ranking of external drivers.
F10.7 was ranked first throughout the 24 hours, the second
ranked features alternated among AE, Dst, and Mag_avg.
AE ranked second for 1st-4th hours, Mag_avg was second
for 5th-11th hours and again AE ranked second on the 12th
hour, then Mag_avg was selected for 13th-15th hours. Dst
took over the second position for 16th-18th hours and fi-
nally AE was selected for 19th-24th hours.

training samples easily (even though training is computa-
tionally intensive) [9]

2.3.2 Convolutional Neural Network (CNN)

Different models have been created to match the character-
istics of the data for various applications [10]. A break-
through known as Convolutional Neural Network (CNN)
appeared in the late 1980s, in order to analyze images. In-
deed, in the original model the neurons were connected to
resemble the organization of the visual cortex of a cat. In
our architecture we have three small CNNs whose output
are fused and passed to a fully connected network.
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2.3.3 Extreme Learning Machine

Extreme Learning Machine (ELM) [11] is a feedforward
neural network with one or more layers of hidden nodes,
and it requires tuning for hidden node parameters as well
as the weights that connect inputs to hidden nodes. The
weights of the nodes of hidden layers may be randomly
chosen and never updated, or they may be passed down
unchanged from predecessors to successors neurons. The
output weights of hidden nodes are typically learnt in a
single step, which is equivalent to learning a linear model
in most situations. While achieving greater generalization
performance, the learning speed can be thousands of times
quicker than that of conventional feedforward network
learning algorithms like the back-propagation (BP) method.

2.4 Stacked Model

In the quest of improving the performance of a predic-
tive model, an ensemble approach called stacking, is based
on hierarchy of the models. The stacking approach for
combining other predictors was developed by Wolpert in
1992 [12]. The stacked model we developed exploits ANN,
CNN, and ELM as its base learners.

3 Results

In order to evaluate the performance of the four models built
(ANN, CNN, ELM and the stacked model), we plot for each
model the coefficient of determination and the RMSE ob-
tained using the test data as shown in Figure 1.

3.1 Results of the predictive performance on
the test dataset

In Figure 3, the blue curve represents the coefficient of de-
termination (Rz) of the stacked model, which is the best
among all of the models. The model predicted 24 hourly
points and the maximum of R? was obtained, as expected
for the prediction of the Ist hour (R?> = 0.97) whilst the
minimum R? occurred on the prediction of the 13th hour
(R?> = 0.88) using the previous 24 hours of both VTEC
and the external drivers. The average performance of the
stacked model is given by R> = 0.9. The correspond-
ing RMSE for the stacked model has a minimum of 0.16
TECU and maximum of 0.30 TECU, with an average of
0.28 TECU as shown in Figure 4. The second best of the
models is the ANN, with maximum is R? = 0.96 whilst the
minimum is R?> = 0.81. The green curve in Figure 3 shows
the coefficient of determination of ANN, the maximum R?
occurred at the 1st hour prediction and the minimum R? oc-
curred at the 8th hour. Their corresponding RMSE are 0.17
and 0.33 TECU respectively as depicted in Figure 4. The
average RMSE for ANN was 0.29 TECU. CNN and ELM
were the least performing models with regard to both R?
and RMSE. The maximum R? for both CNN and ELM is
0.96 and the minimum R? are respectively 0.81 for CNN
and 0.71 for ELM. The RMSE for the corresponding maxi-
mum R? are 0.18 for both CNN and ELM, whilst regarding
the minimum it is 0.39 TECU for CNN and 0.40 TECU
for ELM. The average R? is respectively 0.86 and 0.84,
and their corresponding average RMSE is respectively 0.33
TECU and 0.35 TECU. The maximum R? for both CNN
and ELM occurred at the 1st hour prediction whilst the min-
imum R? occurred at 23rd hour for CNN and 14th-15th hour
for ELM.

4 Conclusions and Future Work

In this paper, we evaluated the performance of four predic-
tive models. The performance of our stacked model was
better than that of the ANN, CNN and ELM models. It
was observed that the inference speed of the models is re-
ally fast, especially for the ELM model. The training time
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Figure 3. Coefficient of determination of each hourly pre-
diction within 24 hours for ANN, CNN, ELM and stacked
model.
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Figure 4. RMSE of each hourly prediction within 24 hours
for ANN, CNN, ELM and stacked model.

of ELM is about 8-12 times faster than the training time
of ANN, CNN and stacked models. The performance of
the model decreases when the time lapse increases. Future
work includes training our models on a solar cycle, ie., ~
11 years, and developing even better ensemble models for
prediction. This approach can be applied in order to support
global, regional and local forecasting systems that are very
important for providing a reliable space weather service to
many applications based on the use of GNSS technology.
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